Highly blue-emissive CBZ-functionalized salen–In complexes: Influence of structural rigidity and donor substituent quantity

IF 1.7 4区 化学 Bulletin of the Korean Chemical Society Pub Date : 2025-01-22 DOI:10.1002/bkcs.12945
Yoseph Kim, Jaehoon Kim, Ji Hye Lee, Hyeongkwon Moon, Hyonseok Hwang, Junseong Lee, Houng Kang, Jun Hui Park, Youngjo Kim, Myung Hwan Park
{"title":"Highly blue-emissive CBZ-functionalized salen–In complexes: Influence of structural rigidity and donor substituent quantity","authors":"Yoseph Kim,&nbsp;Jaehoon Kim,&nbsp;Ji Hye Lee,&nbsp;Hyeongkwon Moon,&nbsp;Hyonseok Hwang,&nbsp;Junseong Lee,&nbsp;Houng Kang,&nbsp;Jun Hui Park,&nbsp;Youngjo Kim,&nbsp;Myung Hwan Park","doi":"10.1002/bkcs.12945","DOIUrl":null,"url":null,"abstract":"<p>Indium–salen complexes with electron-donating carbazole (CBZ) groups at positions 4 (<b>CBZIn1</b>) and both 4 and 6 (<b>CBZIn2</b>) were synthesized and characterized to explore the impact of the number of substituents and the structural rigidity on their photophysical properties. The single-crystal structure of <b>CBZIn2</b> revealed highly twisted arrangements between the CBZ groups and salen moieties, with torsion angles of 80°–81° at 6-position and 45°–47° at 4-position. The In center adopted a nearly square-pyramidal geometry. Both complexes displayed blue fluorescence in toluene at 298 K and in rigid environments (toluene at 77 K and in films), with emission originating from intramolecular charge transfer (ICT) transitions. The photoluminescence quantum yields (PLQYs) of <b>CBZIn1</b> and <b>CBZIn2</b> were low in solution but significantly higher in rigid states. Notably, the film-state PLQY of <b>CBZIn2</b> (78.7%) was over eight times greater than that of <b>CBZIn1</b> (9.0%). A similar trend was observed in toluene at 77 K. These results highlight the positive influence of structural rigidity and a great number of CBZ donors on ICT-based radiative decay. The experimental observations were consistent with computational predictions, further supporting the proposed mechanism.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"46 2","pages":"186-192"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12945","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indium–salen complexes with electron-donating carbazole (CBZ) groups at positions 4 (CBZIn1) and both 4 and 6 (CBZIn2) were synthesized and characterized to explore the impact of the number of substituents and the structural rigidity on their photophysical properties. The single-crystal structure of CBZIn2 revealed highly twisted arrangements between the CBZ groups and salen moieties, with torsion angles of 80°–81° at 6-position and 45°–47° at 4-position. The In center adopted a nearly square-pyramidal geometry. Both complexes displayed blue fluorescence in toluene at 298 K and in rigid environments (toluene at 77 K and in films), with emission originating from intramolecular charge transfer (ICT) transitions. The photoluminescence quantum yields (PLQYs) of CBZIn1 and CBZIn2 were low in solution but significantly higher in rigid states. Notably, the film-state PLQY of CBZIn2 (78.7%) was over eight times greater than that of CBZIn1 (9.0%). A similar trend was observed in toluene at 77 K. These results highlight the positive influence of structural rigidity and a great number of CBZ donors on ICT-based radiative decay. The experimental observations were consistent with computational predictions, further supporting the proposed mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of the Korean Chemical Society
Bulletin of the Korean Chemical Society Chemistry-General Chemistry
自引率
23.50%
发文量
182
期刊介绍: The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.
期刊最新文献
Masthead Cover Picture: Enhancing electrochemical xanthine detection: a two-step incubation strategy to minimize interference from ascorbic acid (BKCS 2/2025) Taeyeon Yoo, Seonhwa Park, Hyoeun Lee, Subin Park, Youngsuk Kim, Haesik Yang Correction to “Highly active cobalt(II) and copper(II) complexes supported by aminomethylquinoline mediating stereoselective ring-opening polymerization of rac-lactide” Highly blue-emissive CBZ-functionalized salen–In complexes: Influence of structural rigidity and donor substituent quantity Quantitative analysis of disaggregation properties of aggregation-induced emission luminogens (AIEgens) and off-the-shelf dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1