{"title":"Recent Decline in Global Ocean Evaporation Due To Wind Stilling","authors":"Ning Ma, Yongqiang Zhang, Yuting Yang","doi":"10.1029/2024GL114256","DOIUrl":null,"url":null,"abstract":"<p>Ocean evaporation (<i>E</i><sub>o</sub>) is the major source of atmospheric water vapor and precipitation. While it is widely recognized that <i>E</i><sub>o</sub> may increase in a warming climate, recent studies have reported a diminished increase in the global water vapor since ∼2000s, raising doubts about recent changes in <i>E</i><sub>o</sub>. Using satellite observations, here we show that while global <i>E</i><sub>o</sub> strongly increased from 1988 to 2017, the upward trend reversed in the late 2000s. Since then, two-thirds of the ocean have experienced weakened evaporation, leading to a slight decreasing trend in global-averaged <i>E</i><sub>o</sub> during 2008–2017. This suggests that even with saturated surface, a warmer climate does not always result in increased evaporation. The reversal in <i>E</i><sub>o</sub> trend is primarily attributed to wind stilling, which is likely tied to the Northern Oscillation Index shifting from positive to negative phases. These findings offer crucial insights into diverse responses of global hydrological cycle to climate change.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114256","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean evaporation (Eo) is the major source of atmospheric water vapor and precipitation. While it is widely recognized that Eo may increase in a warming climate, recent studies have reported a diminished increase in the global water vapor since ∼2000s, raising doubts about recent changes in Eo. Using satellite observations, here we show that while global Eo strongly increased from 1988 to 2017, the upward trend reversed in the late 2000s. Since then, two-thirds of the ocean have experienced weakened evaporation, leading to a slight decreasing trend in global-averaged Eo during 2008–2017. This suggests that even with saturated surface, a warmer climate does not always result in increased evaporation. The reversal in Eo trend is primarily attributed to wind stilling, which is likely tied to the Northern Oscillation Index shifting from positive to negative phases. These findings offer crucial insights into diverse responses of global hydrological cycle to climate change.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.