Chenjing Shang, Yi Chen, Zhuhang Dai, Yaxiaer Yalikun, Lihua Qian, Pooi See Lee, Yang Yang
{"title":"Nanotechnology-Enabled Devices for Ocean Internet of Things","authors":"Chenjing Shang, Yi Chen, Zhuhang Dai, Yaxiaer Yalikun, Lihua Qian, Pooi See Lee, Yang Yang","doi":"10.1002/eom2.70003","DOIUrl":null,"url":null,"abstract":"<p>The growing utilization of the Ocean Internet of Things (Ocean IoT) has a significant impact on human society. Recent advances in nanotechnology in terms of developing unprecedented structural, mechanical, electrical, chemical, and photonic properties have led to devices that are expected to promote the sustainable growth of the emerging Ocean IoT. This review provides a system-level analysis of nanotechnology-enabled sensors, actuators, energy harvesting, antifouling coatings, and environmental remediation that have been developed, with a focus on their materials, structures, and manufacturing technologies, as well as their merits and drawbacks. The challenges associated with the ecotoxicity of nanotechnology-derived pollutants in marine ecosystems are also discussed. Finally, potential future research directions are presented for this emerging field.</p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing utilization of the Ocean Internet of Things (Ocean IoT) has a significant impact on human society. Recent advances in nanotechnology in terms of developing unprecedented structural, mechanical, electrical, chemical, and photonic properties have led to devices that are expected to promote the sustainable growth of the emerging Ocean IoT. This review provides a system-level analysis of nanotechnology-enabled sensors, actuators, energy harvesting, antifouling coatings, and environmental remediation that have been developed, with a focus on their materials, structures, and manufacturing technologies, as well as their merits and drawbacks. The challenges associated with the ecotoxicity of nanotechnology-derived pollutants in marine ecosystems are also discussed. Finally, potential future research directions are presented for this emerging field.