{"title":"Active fault-tolerant control scheme for satellite with four reaction wheels: Multi actuator faults case","authors":"Yong Seok Lee, Ngoc Phi Nguyen, Sung Kyung Hong","doi":"10.1049/cth2.70000","DOIUrl":null,"url":null,"abstract":"<p>This study outlines an approach to design an active fault tolerance control (FTC) system for satellite attitude systems that handle multiple actuator faults. First, a model is provided for the nonlinear attitude system of rigid satellites. Next, an actuator fault detection observer and a fault estimation observer are presented, which detects the time unknown actuator faults that occur and obtains estimated values. Using adaptive sliding mode control techniques, a fault tolerance attitude controller is designed that stabilizes the closed-loop attitude system of rigid satellites in the case of multiple actuator faults. Finally, an experiment is provided demonstrating the superior performance of the active FTC system proposed in this study.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study outlines an approach to design an active fault tolerance control (FTC) system for satellite attitude systems that handle multiple actuator faults. First, a model is provided for the nonlinear attitude system of rigid satellites. Next, an actuator fault detection observer and a fault estimation observer are presented, which detects the time unknown actuator faults that occur and obtains estimated values. Using adaptive sliding mode control techniques, a fault tolerance attitude controller is designed that stabilizes the closed-loop attitude system of rigid satellites in the case of multiple actuator faults. Finally, an experiment is provided demonstrating the superior performance of the active FTC system proposed in this study.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.