Optimising Potassium Levels Improved the Lodging Resistance Index and Soybean Yield in Maize-Soybean Intercropping by Enhanced Stem Diameter and Lignin Synthesis Enzyme Activity

IF 3.7 2区 农林科学 Q1 AGRONOMY Journal of Agronomy and Crop Science Pub Date : 2025-02-20 DOI:10.1111/jac.70036
Yan Gu, Danyang Guo, Chenyang Li, Cong Zheng, Xiang Li, Fangming He, Qingquan Tang, Jia Yu, Hong Ren
{"title":"Optimising Potassium Levels Improved the Lodging Resistance Index and Soybean Yield in Maize-Soybean Intercropping by Enhanced Stem Diameter and Lignin Synthesis Enzyme Activity","authors":"Yan Gu,&nbsp;Danyang Guo,&nbsp;Chenyang Li,&nbsp;Cong Zheng,&nbsp;Xiang Li,&nbsp;Fangming He,&nbsp;Qingquan Tang,&nbsp;Jia Yu,&nbsp;Hong Ren","doi":"10.1111/jac.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lodging is a major factor limiting soybean yield in maize–soybean intercropping system (IS). Potassium fertilisation significantly enhances the lodging resistance index by promoting dry matter accumulation in soybean. However, the physiological mechanisms through which potassium affects the lodging resistance index remain unclear, particularly under different planting systems. In this study, we analysed the relationships between photosynthetic characteristics, root system, stem physiology, stem morphological characteristics, dry matter and lodging resistance index of soybean based on field experiments. The soybean cultivar Jinong 40 was used in both maize–soybean intercropping (maize: soybean as 6:6) and monoculture soybean systems (MS) in a two-year field experiment (2022–2023), with five potassium fertilisation levels (0 kg ha<sup>−1</sup>, 30 kg ha<sup>−1</sup>, 60 kg ha<sup>−1</sup>, 90 kg ha<sup>−1</sup> and 120 kg ha<sup>−1</sup>). Potassium application significantly improved chlorophyll fluorescence parameters, dry matter accumulation, stem lignin synthesis enzyme activity (phenylalanine ammonia-lyase, tyrosine ammonia-lyase and cinnamyl alcohol dehydrogenase), lodging resistance index and grain yield, regardless of the planting system. However, no significant differences in lodging resistance index or grain yield were observed between the potassium rates of 90 kg ha<sup>−1</sup> and 120 kg ha<sup>−1</sup>. Compared to 0 kg ha<sup>−1</sup>, increased potassium rates increased stem diameter by 17.8% and 15.5%, while the ratio of stem length to stem diameter ratio (L/D) decreased by 27.2% and 26.8% in maize–soybean intercropping and monoculture soybean systems, respectively. Across the high potassium inputs (90 kg ha<sup>−1</sup> and 120 kg ha<sup>−1</sup>), phenylalanine ammonia-lyase (2.6%) and cinnamyl alcohol dehydrogenase (3.9%) were higher in the maize–soybean intercropping system compared to the monoculture soybean system. For the two planting patterns, the lodging resistance index was found to be more dependent on stem enzyme activity (93.5% for IS and 75.3% for MS) and L/D ratio (−81.0% for IS and −83.8% for MS), rather than stem length or root characteristics. We conclude that potassium application optimises stem diameter, enhances stem lignin synthesis and reduces the L/D ratio, therefore improving the soybean lodging resistance index and yield, especially in the maize–soybean intercropping system.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70036","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Lodging is a major factor limiting soybean yield in maize–soybean intercropping system (IS). Potassium fertilisation significantly enhances the lodging resistance index by promoting dry matter accumulation in soybean. However, the physiological mechanisms through which potassium affects the lodging resistance index remain unclear, particularly under different planting systems. In this study, we analysed the relationships between photosynthetic characteristics, root system, stem physiology, stem morphological characteristics, dry matter and lodging resistance index of soybean based on field experiments. The soybean cultivar Jinong 40 was used in both maize–soybean intercropping (maize: soybean as 6:6) and monoculture soybean systems (MS) in a two-year field experiment (2022–2023), with five potassium fertilisation levels (0 kg ha−1, 30 kg ha−1, 60 kg ha−1, 90 kg ha−1 and 120 kg ha−1). Potassium application significantly improved chlorophyll fluorescence parameters, dry matter accumulation, stem lignin synthesis enzyme activity (phenylalanine ammonia-lyase, tyrosine ammonia-lyase and cinnamyl alcohol dehydrogenase), lodging resistance index and grain yield, regardless of the planting system. However, no significant differences in lodging resistance index or grain yield were observed between the potassium rates of 90 kg ha−1 and 120 kg ha−1. Compared to 0 kg ha−1, increased potassium rates increased stem diameter by 17.8% and 15.5%, while the ratio of stem length to stem diameter ratio (L/D) decreased by 27.2% and 26.8% in maize–soybean intercropping and monoculture soybean systems, respectively. Across the high potassium inputs (90 kg ha−1 and 120 kg ha−1), phenylalanine ammonia-lyase (2.6%) and cinnamyl alcohol dehydrogenase (3.9%) were higher in the maize–soybean intercropping system compared to the monoculture soybean system. For the two planting patterns, the lodging resistance index was found to be more dependent on stem enzyme activity (93.5% for IS and 75.3% for MS) and L/D ratio (−81.0% for IS and −83.8% for MS), rather than stem length or root characteristics. We conclude that potassium application optimises stem diameter, enhances stem lignin synthesis and reduces the L/D ratio, therefore improving the soybean lodging resistance index and yield, especially in the maize–soybean intercropping system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agronomy and Crop Science
Journal of Agronomy and Crop Science 农林科学-农艺学
CiteScore
8.20
自引率
5.70%
发文量
54
审稿时长
7.8 months
期刊介绍: The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.
期刊最新文献
Root Morpho-Physiological Characteristics and Yield Formation of Rice Under Combined Salinity-Drought Stress Optimising Potassium Levels Improved the Lodging Resistance Index and Soybean Yield in Maize-Soybean Intercropping by Enhanced Stem Diameter and Lignin Synthesis Enzyme Activity Waterlogging Does Not Have a Lasting Impact on Yield Performance and Micronutrient Status of Oat (Avena sativa) Experimental Design and Performance of a Free Air Carbon Dioxide Enrichment Facility in Northern Germany Interactive Effects of CO2 Enrichment and Nitrogen Levels on Leaf Gas Exchange Capacities of Sweet Potato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1