Electromechanical coupling across the gastroduodenal junction

IF 5.6 2区 医学 Q1 PHYSIOLOGY Acta Physiologica Pub Date : 2025-02-20 DOI:10.1111/apha.70008
Sam Simmonds, Jan D. Huizinga, Andrew J. Taberner, Peng Du, Timothy R. Angeli-Gordon
{"title":"Electromechanical coupling across the gastroduodenal junction","authors":"Sam Simmonds,&nbsp;Jan D. Huizinga,&nbsp;Andrew J. Taberner,&nbsp;Peng Du,&nbsp;Timothy R. Angeli-Gordon","doi":"10.1111/apha.70008","DOIUrl":null,"url":null,"abstract":"<p>The gastroduodenal junction is uniquely capable of regulating digestive functions in the gastrointestinal system. The pyloric sphincter, which demarcates the stomach from the small intestine, acts as a mechanical and electrical barrier, isolating each organ, thus enabling independent behaviors that are critical for proper digestion. Unique electrical patterns in the stomach, pylorus, and duodenum underpin the distinct contractile patterns of these regions, and improper organization of these mechanical behaviors leads to clinical conditions such as gastroparesis and dumping syndrome. For this reason, the gastroduodenal junction should be a focal point in investigations of novel biomarkers of gastrointestinal dysfunction. This review summarizes the current knowledge of bioelectrical and mechanical characteristics of the gastroduodenal junction, as well as the relevant underlying anatomy. As there is limited documentation of physiological recordings from the gastroduodenal junction of humans, inferences are made from animal studies and from measurements taken from other regions of the gastrointestinal tract, where appropriate. We suggest hypotheses on gastroduodenal electromechanical coupling and propose further studies to support or reject these ideas. Improved physiological understanding of this region, and the advent of novel diagnostic and therapeutic tools are crucial aspects for the future of clinical gastrointestinal medicine.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 3","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.70008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gastroduodenal junction is uniquely capable of regulating digestive functions in the gastrointestinal system. The pyloric sphincter, which demarcates the stomach from the small intestine, acts as a mechanical and electrical barrier, isolating each organ, thus enabling independent behaviors that are critical for proper digestion. Unique electrical patterns in the stomach, pylorus, and duodenum underpin the distinct contractile patterns of these regions, and improper organization of these mechanical behaviors leads to clinical conditions such as gastroparesis and dumping syndrome. For this reason, the gastroduodenal junction should be a focal point in investigations of novel biomarkers of gastrointestinal dysfunction. This review summarizes the current knowledge of bioelectrical and mechanical characteristics of the gastroduodenal junction, as well as the relevant underlying anatomy. As there is limited documentation of physiological recordings from the gastroduodenal junction of humans, inferences are made from animal studies and from measurements taken from other regions of the gastrointestinal tract, where appropriate. We suggest hypotheses on gastroduodenal electromechanical coupling and propose further studies to support or reject these ideas. Improved physiological understanding of this region, and the advent of novel diagnostic and therapeutic tools are crucial aspects for the future of clinical gastrointestinal medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
期刊最新文献
Electromechanical coupling across the gastroduodenal junction Proinflammatory cytokines and neuropeptides in psoriasis, depression, and anxiety Canonical or non-canonical, all aspects of G protein-coupled receptor kinase 2 in heart failure A reductionist approach to studying renal claudins provides insights into tubular permeability properties A distal convoluted tubule-specific isoform of murine SLC41A3 extrudes magnesium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1