<p>It is a truth universally acknowledged that every neurone needs an astrocyte to survive and operate. Supportive, homeostatic, and protective neuroglial cells emerged early in evolution together with the centralised nervous system (although some collateral cells of non-neural origin aiding neurones and axons probably existed in even earlier diffuse nervous system of Cnidarians and Ctenophoa). In the February issue of<i>Acta Physiologica</i>, a team of researchers led by Nina Vardjan and Robert Zorec<span><sup>1</sup></span> reveals ancient evolutionary roots of noradrenergic signalling and describes the association with astrocytes, astrocytic Ca<sup>2+</sup> signalling, and astrocyte physiology.</p><p>The very first glial cells were parts of sensory organs, known as sensillas, in invertebrates; incidentally, glial-neuronal sensory organs are common in all species (for example, the organ of Corti, taste buds and olfactory epithelium have ~50% of sustenacular glial cells, which are indispensable for proper sensory function<span><sup>2</sup></span>). The rise of neuroglia reflects the main evolutionary principle of division of functions: neurones are so specialised for the generation of action potentials and synaptic transmission that they cannot sustain the major homeostatic and defensive tasks that define the optimal performance and survival of the nervous tissue. These tasks are fulfilled by neuroglia.<span><sup>3</sup></span></p><p>Astroglial cells, which include many types of parenchymal and radial astrocytes, ependymoglia, and astrocyte-like stem cells, are major homeostatic cells in the central nervous system (CNS) that control and execute various functions at all levels of biological organisation, ranging from molecules to organs. In particular, astrocytes control ion homeostasis of the interstitium (also known as ionostasis) and are the main elements of production, clearance, and catabolism of major neurotransmitters and neuromodulators including L-glutamate, GABA, adenosine, catecholamines, and D-serine.<span><sup>4</sup></span> Astrocytes are electrically non-excitable cells, which employ intercellular ion and second messenger signalling as the substrate of excitability.<span><sup>5</sup></span> Astrocytic ionic signalling is mediated by Ca<sup>2+</sup>, Na<sup>+</sup>, and Cl<sup>−</sup> <span><sup>6</sup></span>; the main second messengers are inositol-1,4,5-trisphosphate (InsP<sub>3</sub>, linked to Ca<sup>2+</sup> signalling) and cyclic AMP (cAMP) regulating multiple intracellular enzymatic cascades.<span><sup>5</sup></span> Coordination of ionic and second messenger excitability is critical for astrocytic function in many physiological and pathophysiological contexts.</p><p>Noradrenergic innervation of the CNS is mainly associated with the locus coeruleus, the brain stem nucleus containing (in humans) ~20 000–50 000 noradrenergic neurones full of neuromelanin that gives them a dark blue appearance. The locus coeruleus was discovere
{"title":"Les lésions anciennes: Evolution conserves noradrenergic regulation of astroglial homeostatic support","authors":"Alexei Verkhratsky","doi":"10.1111/apha.70032","DOIUrl":"https://doi.org/10.1111/apha.70032","url":null,"abstract":"<p>It is a truth universally acknowledged that every neurone needs an astrocyte to survive and operate. Supportive, homeostatic, and protective neuroglial cells emerged early in evolution together with the centralised nervous system (although some collateral cells of non-neural origin aiding neurones and axons probably existed in even earlier diffuse nervous system of Cnidarians and Ctenophoa). In the February issue of<i>Acta Physiologica</i>, a team of researchers led by Nina Vardjan and Robert Zorec<span><sup>1</sup></span> reveals ancient evolutionary roots of noradrenergic signalling and describes the association with astrocytes, astrocytic Ca<sup>2+</sup> signalling, and astrocyte physiology.</p><p>The very first glial cells were parts of sensory organs, known as sensillas, in invertebrates; incidentally, glial-neuronal sensory organs are common in all species (for example, the organ of Corti, taste buds and olfactory epithelium have ~50% of sustenacular glial cells, which are indispensable for proper sensory function<span><sup>2</sup></span>). The rise of neuroglia reflects the main evolutionary principle of division of functions: neurones are so specialised for the generation of action potentials and synaptic transmission that they cannot sustain the major homeostatic and defensive tasks that define the optimal performance and survival of the nervous tissue. These tasks are fulfilled by neuroglia.<span><sup>3</sup></span></p><p>Astroglial cells, which include many types of parenchymal and radial astrocytes, ependymoglia, and astrocyte-like stem cells, are major homeostatic cells in the central nervous system (CNS) that control and execute various functions at all levels of biological organisation, ranging from molecules to organs. In particular, astrocytes control ion homeostasis of the interstitium (also known as ionostasis) and are the main elements of production, clearance, and catabolism of major neurotransmitters and neuromodulators including L-glutamate, GABA, adenosine, catecholamines, and D-serine.<span><sup>4</sup></span> Astrocytes are electrically non-excitable cells, which employ intercellular ion and second messenger signalling as the substrate of excitability.<span><sup>5</sup></span> Astrocytic ionic signalling is mediated by Ca<sup>2+</sup>, Na<sup>+</sup>, and Cl<sup>−</sup> <span><sup>6</sup></span>; the main second messengers are inositol-1,4,5-trisphosphate (InsP<sub>3</sub>, linked to Ca<sup>2+</sup> signalling) and cyclic AMP (cAMP) regulating multiple intracellular enzymatic cascades.<span><sup>5</sup></span> Coordination of ionic and second messenger excitability is critical for astrocytic function in many physiological and pathophysiological contexts.</p><p>Noradrenergic innervation of the CNS is mainly associated with the locus coeruleus, the brain stem nucleus containing (in humans) ~20 000–50 000 noradrenergic neurones full of neuromelanin that gives them a dark blue appearance. The locus coeruleus was discovere","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 4","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam N. Keen, James C. McConnell, John J. Mackrill, John Marrin, Alex J. Holsgrove, Janna Crossley, Alex Henderson, Gina L. J. Galli, Dane A. Crossley II, Michael J. Sherratt, Peter Gardner, Holly A. Shiels