Shakiba Samsami, Majed Amini, Seyed Mohammad Amin Ojagh, Estatira Amirieh, Ayako Takagi, Theo G M van de Ven, Mohammad Arjmand, Orlando J Rojas, Kam Chiu Tam, Milad Kamkar
{"title":"Nano- and Microscale Design of Electrically Conductive Bacterial Cellulose/PEDOT Cryogels for Electromagnetic Interference Shielding.","authors":"Shakiba Samsami, Majed Amini, Seyed Mohammad Amin Ojagh, Estatira Amirieh, Ayako Takagi, Theo G M van de Ven, Mohammad Arjmand, Orlando J Rojas, Kam Chiu Tam, Milad Kamkar","doi":"10.1021/acs.langmuir.4c05363","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting conductive biobased polymer nanocomposites for electromagnetic interference (EMI) shielding is a rapidly evolving research area. In this study, we systematically fine-tune the nano- and microstructural features of bacterial cellulose (BC) modified with poly(3,4-ethylenedioxythiophene) (PEDOT) for EMI shielding applications. First, to investigate the effect of nanostructure, PEDOT is incorporated into the BC matrix using two methods: chemical vapor polymerization (CVP) and <i>in situ</i> polymerization. The CVP method produces more uniform and denser BC-PEDOT nanocomposites, resulting in cryogels with higher electrical conductivity and total EMI shielding effectiveness (SE<sub>T</sub>) (52 ± 2 S/m, 37 dB) compared to those of the <i>in situ</i> polymerized BC-PEDOT cryogels (7 ± 1.5 S/m, 27 dB). The cryogels' microstructure is then adjusted to control the EMI shielding mechanisms by applying different drying methods: freeze-drying, air-drying, and hybrid freeze- and air-drying. Our results indicate that the more energy-efficient air-drying method enhances the reflection-dominant EMI shielding mechanism, with a slight increase in total shielding effectiveness. The drying conditions also affect the final mechanical properties of the samples. Overall, this study demonstrates that BC-PEDOT nanocomposites are excellent candidates for EMI shielding applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05363","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploiting conductive biobased polymer nanocomposites for electromagnetic interference (EMI) shielding is a rapidly evolving research area. In this study, we systematically fine-tune the nano- and microstructural features of bacterial cellulose (BC) modified with poly(3,4-ethylenedioxythiophene) (PEDOT) for EMI shielding applications. First, to investigate the effect of nanostructure, PEDOT is incorporated into the BC matrix using two methods: chemical vapor polymerization (CVP) and in situ polymerization. The CVP method produces more uniform and denser BC-PEDOT nanocomposites, resulting in cryogels with higher electrical conductivity and total EMI shielding effectiveness (SET) (52 ± 2 S/m, 37 dB) compared to those of the in situ polymerized BC-PEDOT cryogels (7 ± 1.5 S/m, 27 dB). The cryogels' microstructure is then adjusted to control the EMI shielding mechanisms by applying different drying methods: freeze-drying, air-drying, and hybrid freeze- and air-drying. Our results indicate that the more energy-efficient air-drying method enhances the reflection-dominant EMI shielding mechanism, with a slight increase in total shielding effectiveness. The drying conditions also affect the final mechanical properties of the samples. Overall, this study demonstrates that BC-PEDOT nanocomposites are excellent candidates for EMI shielding applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).