Epitope and Paratope Mapping of a SUMO-Remnant Antibody Using Cross-Linking Mass Spectrometry and Molecular Docking.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-02-18 DOI:10.1021/acs.jproteome.4c00717
Simon Comtois-Marotte, Éric Bonneil, Chongyang Li, Matthew J Smith, Pierre Thibault
{"title":"Epitope and Paratope Mapping of a SUMO-Remnant Antibody Using Cross-Linking Mass Spectrometry and Molecular Docking.","authors":"Simon Comtois-Marotte, Éric Bonneil, Chongyang Li, Matthew J Smith, Pierre Thibault","doi":"10.1021/acs.jproteome.4c00717","DOIUrl":null,"url":null,"abstract":"<p><p>The small ubiquitin-like modifier (SUMO) is an important post-translational modification that regulates the function of various proteins essential for DNA damage repair, genome integrity, and cell homeostasis. To identify protein SUMOylation effectively, an enrichment step is necessary, often requiring exogenous gene expression in cells and immunoaffinity purification of SUMO-remnant peptides following tryptic digestion. Previously, an antibody was developed to enrich tryptic peptides containing the remnant NQTGG on the receptor lysine, although the specifics of the structural interaction motif remained unclear. This study integrates <i>de novo</i> sequencing, intact mass spectrometry, cross-linking mass spectrometry, and molecular docking to elucidate the structural interaction motifs of a SUMO-remnant antibody. Additional cross-linking experiments were performed using SUMOylated peptides and high-field asymmetric waveform ion mobility spectrometry (FAIMS) to enhance the sensitivity and confirm interactions at the paratope interface. This study establishes a robust framework for characterizing antibody-antigen interactions, offering valuable insights into the structural basis of SUMO-remnant peptide recognition.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00717","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The small ubiquitin-like modifier (SUMO) is an important post-translational modification that regulates the function of various proteins essential for DNA damage repair, genome integrity, and cell homeostasis. To identify protein SUMOylation effectively, an enrichment step is necessary, often requiring exogenous gene expression in cells and immunoaffinity purification of SUMO-remnant peptides following tryptic digestion. Previously, an antibody was developed to enrich tryptic peptides containing the remnant NQTGG on the receptor lysine, although the specifics of the structural interaction motif remained unclear. This study integrates de novo sequencing, intact mass spectrometry, cross-linking mass spectrometry, and molecular docking to elucidate the structural interaction motifs of a SUMO-remnant antibody. Additional cross-linking experiments were performed using SUMOylated peptides and high-field asymmetric waveform ion mobility spectrometry (FAIMS) to enhance the sensitivity and confirm interactions at the paratope interface. This study establishes a robust framework for characterizing antibody-antigen interactions, offering valuable insights into the structural basis of SUMO-remnant peptide recognition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
γ Irradiation Alters the Staphylococcus aureus Proteome and Enhances Pathogenicity. Gemcitabine Alters Phosphatidylcholine Metabolism in Mouse Pancreatic Tumors. Quantitative Proteome and Phosphoproteome Profiling across Three Cell Lines Revealed Potential Proteins Relevant to Nasopharyngeal Carcinoma Metastasis. The Proteoform Program of Life: Deciphering Evolution at the Protein Level. Epitope and Paratope Mapping of a SUMO-Remnant Antibody Using Cross-Linking Mass Spectrometry and Molecular Docking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1