Efficacy of green synthesized titanium dioxide nanoparticles in attenuation salt stress in Glycine max plants: modulations in metabolic constituents and cell ultrastructure.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-18 DOI:10.1186/s12870-025-06194-6
Reda E Abdelhameed, Hegazy S Hegazy, Hanan Abdalla, Marwa H Adarosy
{"title":"Efficacy of green synthesized titanium dioxide nanoparticles in attenuation salt stress in Glycine max plants: modulations in metabolic constituents and cell ultrastructure.","authors":"Reda E Abdelhameed, Hegazy S Hegazy, Hanan Abdalla, Marwa H Adarosy","doi":"10.1186/s12870-025-06194-6","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is among the major abiotic stresses faced by different countries; limiting plant growth, development and yield. This research work was carried out to evaluate the influence of green prepared titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) on the growth, metabolic constituents and ultrastructural alterations of soybean (Glycine max L.) plants exposed to salt stress. TiO<sub>2</sub> NPs were green synthesized using an aqueous solution of Aloe vera leaf extract and the obtained NPs were identified using several techniques. An in vivo pot experiment was carried out to evaluate the role of foliar sprayed TiO<sub>2</sub> NPs (30 ppm) on soybean plants irrigated by six NaCl concentrations (0, 25, 50, 100, 150 and 200 mM). After 15 and 30 days from salt application, growth parameters, photosynthetic pigments, total soluble protein, enzymatic antioxidants and ultrastructural changes were tested for potential tolerance of soybean plants growing under salt stress. Results revealed that increasing salt concentrations induced a significant decrease in shoot length, fresh and dry weights as well as the photosynthetic pigments, these decreases were due to increasing electrolyte leakage of soybean plants. However, application of TiO<sub>2</sub> NPs showed improvements in the vegetative growth by increasing its pigments and protein contents. There was a marked increase in the contents of enzymatic antioxidants in salt stressed soybean plants and further accumulation of their contents with TiO<sub>2</sub> NPs application. Salt stressed soybean plants showed structural and ultrastructural deformation which was lessened by TiO<sub>2</sub> NPs application. Finally, our research demonstrates the role of TiO<sub>2</sub> NPs in alleviating salt stress in soybean plants via restoring the antioxidants and cell ultrastructure, highlighting their potential role as a sustainable and eco-friendly strategy.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"221"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06194-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity is among the major abiotic stresses faced by different countries; limiting plant growth, development and yield. This research work was carried out to evaluate the influence of green prepared titanium dioxide nanoparticles (TiO2 NPs) on the growth, metabolic constituents and ultrastructural alterations of soybean (Glycine max L.) plants exposed to salt stress. TiO2 NPs were green synthesized using an aqueous solution of Aloe vera leaf extract and the obtained NPs were identified using several techniques. An in vivo pot experiment was carried out to evaluate the role of foliar sprayed TiO2 NPs (30 ppm) on soybean plants irrigated by six NaCl concentrations (0, 25, 50, 100, 150 and 200 mM). After 15 and 30 days from salt application, growth parameters, photosynthetic pigments, total soluble protein, enzymatic antioxidants and ultrastructural changes were tested for potential tolerance of soybean plants growing under salt stress. Results revealed that increasing salt concentrations induced a significant decrease in shoot length, fresh and dry weights as well as the photosynthetic pigments, these decreases were due to increasing electrolyte leakage of soybean plants. However, application of TiO2 NPs showed improvements in the vegetative growth by increasing its pigments and protein contents. There was a marked increase in the contents of enzymatic antioxidants in salt stressed soybean plants and further accumulation of their contents with TiO2 NPs application. Salt stressed soybean plants showed structural and ultrastructural deformation which was lessened by TiO2 NPs application. Finally, our research demonstrates the role of TiO2 NPs in alleviating salt stress in soybean plants via restoring the antioxidants and cell ultrastructure, highlighting their potential role as a sustainable and eco-friendly strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. How to utilize far-red photons effectively: substitution or supplementation with photosynthetically active radiation? A case study of greenhouse lettuce. Proteomics analysis revealed the activation and suppression of different host defense components challenged with mango leaf spot pathogen Alternaria alternata. Salinity tolerance in Cucumis sativus seedlings: the role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1