Genome-wide analysis of HSP70 gene family in Beta vulgaris and in-silico expression under environmental stress.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-18 DOI:10.1186/s12870-025-06214-5
Pravej Alam, Thamir Al Balawi, Muhammad Amir Manzoor, Irfan Ali Sabir
{"title":"Genome-wide analysis of HSP70 gene family in Beta vulgaris and in-silico expression under environmental stress.","authors":"Pravej Alam, Thamir Al Balawi, Muhammad Amir Manzoor, Irfan Ali Sabir","doi":"10.1186/s12870-025-06214-5","DOIUrl":null,"url":null,"abstract":"<p><p>Heat shock proteins, HSP70, are vital for plant stress response mechanisms, particularly under abiotic stresses, such as salinity and drought. However, its role in Beta vulgaris is still unknown. We conducted a comprehensive genome-wide analysis of the BvHSP70 gene family in B. vulgaris roots to elucidate their diverse functions, regulatory mechanisms, and roles in abiotic stress adaptation. We identified 22 BvHSP70 genes, characterized by conserved motifs and cis elements associated with stress response in the gene promoters. miRNA interactions suggest regulatory roles, while gene duplication and syntenic analysis were utilized to reveal evolutionary trends with insights into gene expansion and conservation across species. These findings indicate the involvement of BvHSP70 genes in stress adaptation and broader biological processes. Key regulatory miRNAs were identified in two BvHSP70 genes. Expression analysis under salt stress indicated significant upregulation of BvHSP70-2 gene, BvHSP70-15 gene, and BvHSP70-17 gene after 1 day, whereas BvHSP70-18 showed notable upregulation after 7 days. Under drought stress, BvHSP70-4, BvHSP70-13, and BvHSP70-14 were significantly downregulated, whereas BvHSP70-17 and BvHSP70-20 were significantly upregulated. These findings demonstrate the critical function of the BvHSP70 family in B. vulgaris stress adaptation. Understanding the functional and regulatory mechanisms of BvHSP70 can facilitate the development of strategies to enhance stress tolerance in B. vulgaris and other crops, thereby contributing to agricultural sustainability and food security.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"214"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06214-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heat shock proteins, HSP70, are vital for plant stress response mechanisms, particularly under abiotic stresses, such as salinity and drought. However, its role in Beta vulgaris is still unknown. We conducted a comprehensive genome-wide analysis of the BvHSP70 gene family in B. vulgaris roots to elucidate their diverse functions, regulatory mechanisms, and roles in abiotic stress adaptation. We identified 22 BvHSP70 genes, characterized by conserved motifs and cis elements associated with stress response in the gene promoters. miRNA interactions suggest regulatory roles, while gene duplication and syntenic analysis were utilized to reveal evolutionary trends with insights into gene expansion and conservation across species. These findings indicate the involvement of BvHSP70 genes in stress adaptation and broader biological processes. Key regulatory miRNAs were identified in two BvHSP70 genes. Expression analysis under salt stress indicated significant upregulation of BvHSP70-2 gene, BvHSP70-15 gene, and BvHSP70-17 gene after 1 day, whereas BvHSP70-18 showed notable upregulation after 7 days. Under drought stress, BvHSP70-4, BvHSP70-13, and BvHSP70-14 were significantly downregulated, whereas BvHSP70-17 and BvHSP70-20 were significantly upregulated. These findings demonstrate the critical function of the BvHSP70 family in B. vulgaris stress adaptation. Understanding the functional and regulatory mechanisms of BvHSP70 can facilitate the development of strategies to enhance stress tolerance in B. vulgaris and other crops, thereby contributing to agricultural sustainability and food security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. How to utilize far-red photons effectively: substitution or supplementation with photosynthetically active radiation? A case study of greenhouse lettuce. Proteomics analysis revealed the activation and suppression of different host defense components challenged with mango leaf spot pathogen Alternaria alternata. Salinity tolerance in Cucumis sativus seedlings: the role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1