Minseon Cho, Susan H Tam, Lihua Shi, Isa Fung, Mark Tornetta, Gabriela A Canziani, Man-Cheong Fung, Mark L Chiu, Chao Han, Di Zhang
{"title":"Discovery and Phase 1 study of a novel monoclonal antibody against human IL-1β for the treatment of IL-1β-mediated diseases.","authors":"Minseon Cho, Susan H Tam, Lihua Shi, Isa Fung, Mark Tornetta, Gabriela A Canziani, Man-Cheong Fung, Mark L Chiu, Chao Han, Di Zhang","doi":"10.1093/cei/uxaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-1β (IL-1β) is a key mediator of innate immunity against pathogen infections. However, dysregulated IL-1β activity is associated with various autoinflammatory, autoimmune, degenerative, atherosclerotic diseases, and cancers. Biologic drugs that neutralize excess IL-1β activity, such as canakinumab, have been effective in treating IL-1β-mediated diseases. This article reports the discovery and development of a novel humanized anti-IL-1β antibody, designated as TAVO103A, which exhibited potent binding affinities to human and monkey IL-1β. TAVO103A demonstrated more potent neutralization of IL-1β activities compared to canakinumab in multiple assays, including tests on the IL-1β-driven signal transduction cascade, inflammatory cytokine release from MRC-5 cells, chemokine release from A549 cells, and the proliferation of D10.G4.1 helper T cells. Ex vivo studies showed that TAVO103A effectively neutralized IL-1β-mediated release of pro-inflammatory cytokines from peripheral blood mononuclear cells (PBMC). In addition, TAVO103A exhibited dose-dependent efficacy in a knee joint inflammation mouse model. TAVO103A underwent Fc engineering to reduce binding to Fcγ receptors, increase affinity to FcRn receptors, and enhance its resistance to proteolytic degradation. In a Phase 1 study, TAVO103A was found to be safe, well tolerated, and demonstrated a median half-life of 63 days in healthy subjects. By recognizing a different epitope, TAVO103A provided more potent neutralization of IL-1β activities, a longer circulating half-life, and improved safety profiles compared to canakinumab, positioning it to be a potential best-in-class therapeutic option for various IL-1β-mediated diseases.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxaf009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-1β (IL-1β) is a key mediator of innate immunity against pathogen infections. However, dysregulated IL-1β activity is associated with various autoinflammatory, autoimmune, degenerative, atherosclerotic diseases, and cancers. Biologic drugs that neutralize excess IL-1β activity, such as canakinumab, have been effective in treating IL-1β-mediated diseases. This article reports the discovery and development of a novel humanized anti-IL-1β antibody, designated as TAVO103A, which exhibited potent binding affinities to human and monkey IL-1β. TAVO103A demonstrated more potent neutralization of IL-1β activities compared to canakinumab in multiple assays, including tests on the IL-1β-driven signal transduction cascade, inflammatory cytokine release from MRC-5 cells, chemokine release from A549 cells, and the proliferation of D10.G4.1 helper T cells. Ex vivo studies showed that TAVO103A effectively neutralized IL-1β-mediated release of pro-inflammatory cytokines from peripheral blood mononuclear cells (PBMC). In addition, TAVO103A exhibited dose-dependent efficacy in a knee joint inflammation mouse model. TAVO103A underwent Fc engineering to reduce binding to Fcγ receptors, increase affinity to FcRn receptors, and enhance its resistance to proteolytic degradation. In a Phase 1 study, TAVO103A was found to be safe, well tolerated, and demonstrated a median half-life of 63 days in healthy subjects. By recognizing a different epitope, TAVO103A provided more potent neutralization of IL-1β activities, a longer circulating half-life, and improved safety profiles compared to canakinumab, positioning it to be a potential best-in-class therapeutic option for various IL-1β-mediated diseases.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.