Bo Pan, Di Hu, Yao Wei Lu, Jing Luo, Xiao Hui Hu, Haipeng Guo, Rui Deng, Zhuomin Liang, Yi Wang, Qing Ma, John David Mably, Jie Tian, Da-Zhi Wang
{"title":"Trbp inhibits cardiac fibrosis through TGF-β pathway mediated crosstalk between cardiomyocytes and fibroblasts.","authors":"Bo Pan, Di Hu, Yao Wei Lu, Jing Luo, Xiao Hui Hu, Haipeng Guo, Rui Deng, Zhuomin Liang, Yi Wang, Qing Ma, John David Mably, Jie Tian, Da-Zhi Wang","doi":"10.1042/CS20242397","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multi-functional RNA-binding protein (RBP) that is essential during heart development but its role in the adult heart and cardiac remodeling are unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction (TAC) pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-seq revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase of fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by crosstalk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention through targeting of Trbp.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20242397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multi-functional RNA-binding protein (RBP) that is essential during heart development but its role in the adult heart and cardiac remodeling are unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction (TAC) pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-seq revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase of fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by crosstalk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention through targeting of Trbp.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.