Trbp inhibits cardiac fibrosis through TGF-β pathway mediated crosstalk between cardiomyocytes and fibroblasts.

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2025-02-19 DOI:10.1042/CS20242397
Bo Pan, Di Hu, Yao Wei Lu, Jing Luo, Xiao Hui Hu, Haipeng Guo, Rui Deng, Zhuomin Liang, Yi Wang, Qing Ma, John David Mably, Jie Tian, Da-Zhi Wang
{"title":"Trbp inhibits cardiac fibrosis through TGF-β pathway mediated crosstalk between cardiomyocytes and fibroblasts.","authors":"Bo Pan, Di Hu, Yao Wei Lu, Jing Luo, Xiao Hui Hu, Haipeng Guo, Rui Deng, Zhuomin Liang, Yi Wang, Qing Ma, John David Mably, Jie Tian, Da-Zhi Wang","doi":"10.1042/CS20242397","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multi-functional RNA-binding protein (RBP) that is essential during heart development but its role in the adult heart and cardiac remodeling are unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction (TAC) pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-seq revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase of fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by crosstalk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention through targeting of Trbp.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20242397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multi-functional RNA-binding protein (RBP) that is essential during heart development but its role in the adult heart and cardiac remodeling are unknown. We generated inducible conditional knockout mice to delete Trbp from cardiomyocytes in young adults (Trbp-cKOs). While Trbp-cKO mice did not display a detectable phenotype, under stress conditions induced by transverse aortic constriction (TAC) pressure overload, they rapidly developed severe heart failure; this was associated with maladaptive cardiac remodeling and increased interstitial fibrosis. RNA-seq revealed the induction of a fibrotic gene expression network and the TGF-β signaling pathway in Trbp-cKO hearts. In cultured neonatal rat ventricle cardiomyocytes (NRCMs), inhibition of Trbp resulted in an induction of the expression of both Tgfβ2 and Ltbp2; in contrast, Trbp overexpression repressed Tgfβ2 expression. Knockdown of Trbp in NRCMs that were co-cultured with neonatal rat cardiac fibroblasts (NRCFs) resulted in an increase of fibrotic gene expression. However, knockdown of Trbp in NRCMs combined with knockdown of Tgfβ2 in NRCFs using the same co-culture system failed to induce the same change in fibrotic gene expression. These data provide evidence for a critical role for Trbp in regulating cardiac fibrosis during cardiac remodeling mediated by crosstalk between cardiomyocytes and fibroblasts. The link to TGF-β signaling also highlights its importance and reveals a novel approach to intervention through targeting of Trbp.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
Harnessing 2D and 3D human endometrial cell culture models to investigate SARS-CoV-2 infection in early pregnancy. Persistent subclinical renal injury in female rats following renal ischemia-reperfusion injury. Trbp inhibits cardiac fibrosis through TGF-β pathway mediated crosstalk between cardiomyocytes and fibroblasts. Renal damage-induced hepcidin accumulation contributes to anemia in angiotensinogen-deficient mice. Blockade of neddylation through targeted inhibition of DCN1 alleviates renal fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1