Cíntia Ramos Pereira Azara, Carolina Lírio Didier Peixe, Carlos Eduardo de Faria Cardoso, Maria Eduarda Pereira Azara, Monique Elias, Otniel Freitas-Silva, Anderson Junger Teodoro
{"title":"Physicochemical, microbiology, and sensory characteristics of kombucha prepared with Tommy mango peel flour.","authors":"Cíntia Ramos Pereira Azara, Carolina Lírio Didier Peixe, Carlos Eduardo de Faria Cardoso, Maria Eduarda Pereira Azara, Monique Elias, Otniel Freitas-Silva, Anderson Junger Teodoro","doi":"10.1177/10820132251319930","DOIUrl":null,"url":null,"abstract":"<p><p>Fermented foods are a good option due to the beneficial compounds generated in the fermentation process and the low pH that allows conservation without additives. The objective of the study was to produce and include Tommy mango peel flour in the production of kombucha and evaluate its effects on the physicochemical and sensory properties, antioxidant capacity, and microbiological profile. The kombucha was developed with green tea and the addition of Tommy mango peel flour (10% and 20%). The kombuchas were evaluated in the first fermentation (aerobic) and at the end of the second fermentation (anaerobic), the granulometry and colorimetry of the flour and the antioxidant profile were evaluated. Microbiome analysis was performed by 16S DNA extraction. For sensory analysis, an affective test was performed for global evaluation, flavor, texture, and oral perception. The results showed that the total phenolic content was 4.86 mg EAG/mL in F1, 8.79 mg EAG/mL in F2 with 10% mango peel flour, and 8.83 ± 0.54 mg EAG/mL in F2 with 20% mango peel flour, evidencing a significant increase in the second fermentation with the addition of the flour. In addition, the antioxidant activity was also higher in the second fermentation. The values obtained were F1 = 15.27 µmol TE/mL; F2 with 10% FCMT = 18.80 µmol TE/mL; and F2 with 20% FCMT = 26.76 µmol TE/mL. These findings indicate that the antioxidant capacity increases significantly during the second fermentation, directly correlating with the amount of mango peel flour added. The most abundant bacterial genera were <i>Liquorilactobacillus nagelii</i> (72%), <i>Acetobacter</i> (13%), and <i>Komagataeibacter</i> (12%) and for fungi (90%) <i>Brettanomyces/Dekkera bruxellensis</i>. The beverage obtained different levels of acceptance among consumers and non-consumers only in terms of flavor, proving to be a good alternative for the food industry for applying a mango byproduct to drinks.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"10820132251319930"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132251319930","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fermented foods are a good option due to the beneficial compounds generated in the fermentation process and the low pH that allows conservation without additives. The objective of the study was to produce and include Tommy mango peel flour in the production of kombucha and evaluate its effects on the physicochemical and sensory properties, antioxidant capacity, and microbiological profile. The kombucha was developed with green tea and the addition of Tommy mango peel flour (10% and 20%). The kombuchas were evaluated in the first fermentation (aerobic) and at the end of the second fermentation (anaerobic), the granulometry and colorimetry of the flour and the antioxidant profile were evaluated. Microbiome analysis was performed by 16S DNA extraction. For sensory analysis, an affective test was performed for global evaluation, flavor, texture, and oral perception. The results showed that the total phenolic content was 4.86 mg EAG/mL in F1, 8.79 mg EAG/mL in F2 with 10% mango peel flour, and 8.83 ± 0.54 mg EAG/mL in F2 with 20% mango peel flour, evidencing a significant increase in the second fermentation with the addition of the flour. In addition, the antioxidant activity was also higher in the second fermentation. The values obtained were F1 = 15.27 µmol TE/mL; F2 with 10% FCMT = 18.80 µmol TE/mL; and F2 with 20% FCMT = 26.76 µmol TE/mL. These findings indicate that the antioxidant capacity increases significantly during the second fermentation, directly correlating with the amount of mango peel flour added. The most abundant bacterial genera were Liquorilactobacillus nagelii (72%), Acetobacter (13%), and Komagataeibacter (12%) and for fungi (90%) Brettanomyces/Dekkera bruxellensis. The beverage obtained different levels of acceptance among consumers and non-consumers only in terms of flavor, proving to be a good alternative for the food industry for applying a mango byproduct to drinks.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).