Radiology Report Annotation Using Generative Large Language Models: Comparative Analysis.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL International Journal of Biomedical Imaging Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.1155/ijbi/5019035
Bayan Altalla', Ashraf Ahmad, Layla Bitar, Mohammed Al-Bssol, Amal Al Omari, Iyad Sultan
{"title":"Radiology Report Annotation Using Generative Large Language Models: Comparative Analysis.","authors":"Bayan Altalla', Ashraf Ahmad, Layla Bitar, Mohammed Al-Bssol, Amal Al Omari, Iyad Sultan","doi":"10.1155/ijbi/5019035","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in large language models (LLMs), particularly GPT-3.5 and GPT-4, have sparked significant interest in their application within the medical field. This research offers a detailed comparative analysis of the abilities of GPT-3.5 and GPT-4 in the context of annotating radiology reports and generating impressions from chest computed tomography (CT) scans. The primary objective is to use these models to assist healthcare professionals in handling routine documentation tasks. Employing methods such as in-context learning (ICL) and retrieval-augmented generation (RAG), the study focused on generating impression sections from radiological findings. Comprehensive evaluation was applied using a variety of metrics, including recall-oriented understudy for gisting evaluation (ROUGE) for n-gram analysis, Instructor Similarity for contextual similarity, and BERTScore for semantic similarity, to assess the performance of these models. The study shows distinct performance differences between GPT-3.5 and GPT-4 across both zero-shot and few-shot learning scenarios. It was observed that certain prompts significantly influenced the performance outcomes, with specific prompts leading to more accurate impressions. The RAG method achieved a superior BERTScore of 0.92, showcasing its ability to generate semantically rich and contextually accurate impressions. In contrast, GPT-3.5 and GPT-4 excel in preserving language tone, with Instructor Similarity scores of approximately 0.92 across scenarios, underscoring the importance of prompt design in effective summarization tasks. The findings of this research emphasize the critical role of prompt design in optimizing model efficacy and point to the significant potential for further exploration in prompt engineering. Moreover, the study advocates for the standardized integration of such advanced LLMs in healthcare practices, highlighting their potential to enhance the efficiency and accuracy of medical documentation.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"5019035"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/5019035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in large language models (LLMs), particularly GPT-3.5 and GPT-4, have sparked significant interest in their application within the medical field. This research offers a detailed comparative analysis of the abilities of GPT-3.5 and GPT-4 in the context of annotating radiology reports and generating impressions from chest computed tomography (CT) scans. The primary objective is to use these models to assist healthcare professionals in handling routine documentation tasks. Employing methods such as in-context learning (ICL) and retrieval-augmented generation (RAG), the study focused on generating impression sections from radiological findings. Comprehensive evaluation was applied using a variety of metrics, including recall-oriented understudy for gisting evaluation (ROUGE) for n-gram analysis, Instructor Similarity for contextual similarity, and BERTScore for semantic similarity, to assess the performance of these models. The study shows distinct performance differences between GPT-3.5 and GPT-4 across both zero-shot and few-shot learning scenarios. It was observed that certain prompts significantly influenced the performance outcomes, with specific prompts leading to more accurate impressions. The RAG method achieved a superior BERTScore of 0.92, showcasing its ability to generate semantically rich and contextually accurate impressions. In contrast, GPT-3.5 and GPT-4 excel in preserving language tone, with Instructor Similarity scores of approximately 0.92 across scenarios, underscoring the importance of prompt design in effective summarization tasks. The findings of this research emphasize the critical role of prompt design in optimizing model efficacy and point to the significant potential for further exploration in prompt engineering. Moreover, the study advocates for the standardized integration of such advanced LLMs in healthcare practices, highlighting their potential to enhance the efficiency and accuracy of medical documentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
期刊最新文献
Visualization of Small Vessels by Micro-Computed Tomography Using Titanium Dioxide Nanoparticles as a Novel Contrast Agent. Qualitative and Quantitative Evaluation of the Image Quality of MDCT Multiphasic Liver Scans in HCC Patients. Radiology Report Annotation Using Generative Large Language Models: Comparative Analysis. Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models. Simple Imaging System for Label-Free Identification of Bacterial Pathogens in Resource-Limited Settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1