Comprehensive metabolite profiling reveals the dynamic changes of volatile and non-volatile metabolites in albino tea cultivar 'Ming guan' (MG) during white tea withering process.

Ting Huang, Yinggen Zhang, Xiuping Wang, Hui Zhang, Changsong Chen, Quanbin Chen, Qiusheng Zhong
{"title":"Comprehensive metabolite profiling reveals the dynamic changes of volatile and non-volatile metabolites in albino tea cultivar 'Ming guan' (MG) during white tea withering process.","authors":"Ting Huang, Yinggen Zhang, Xiuping Wang, Hui Zhang, Changsong Chen, Quanbin Chen, Qiusheng Zhong","doi":"10.1016/j.foodres.2025.115784","DOIUrl":null,"url":null,"abstract":"<p><p>'Ming guan'(MG), an elite albino cultivar deriving from the progeny of the traditional albino cultivar 'Bai jiguan', is a promising candidate for white tea production due to its favorable amino acid to phenol ratio. In this study, a comprehensive metabolomics analysis using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) were conducted to reveal the dynamic changes of non-volatile and volatile organic compounds (VOCs) throughout the withering processing of MG white tea. Meanwhile, multivariate statistical analyses were applied to screen for the characteristic components in the flavor and aroma of MG white tea. A total of 625 non-volatile metabolites and 118 VOCs were determined, of which 90 non-volatile metabolites (VIP ≥ 1, FC ≥ 2 or ≤ 0.5) were identified as key flavor components significantly changed throughout the withering process. The relative odor activity value (ROAV) analysis highlighted 22 VOCs (ROAV ≥ 1) with substantial effect on aroma formation, of which geraniol, (E)-2-hexenal, 4-methoxy-benzaldehyde and guaiacol emerging as the most key aroma constituents of MG white tea, endowing MG white tea with fruity and floral odor notes. This study offered a comprehensive investigation into metabolite changes in MG white tea, contributing valuable insights for the innovation of new white tea products utilizing albino tea plant mutants.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115784"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

'Ming guan'(MG), an elite albino cultivar deriving from the progeny of the traditional albino cultivar 'Bai jiguan', is a promising candidate for white tea production due to its favorable amino acid to phenol ratio. In this study, a comprehensive metabolomics analysis using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) were conducted to reveal the dynamic changes of non-volatile and volatile organic compounds (VOCs) throughout the withering processing of MG white tea. Meanwhile, multivariate statistical analyses were applied to screen for the characteristic components in the flavor and aroma of MG white tea. A total of 625 non-volatile metabolites and 118 VOCs were determined, of which 90 non-volatile metabolites (VIP ≥ 1, FC ≥ 2 or ≤ 0.5) were identified as key flavor components significantly changed throughout the withering process. The relative odor activity value (ROAV) analysis highlighted 22 VOCs (ROAV ≥ 1) with substantial effect on aroma formation, of which geraniol, (E)-2-hexenal, 4-methoxy-benzaldehyde and guaiacol emerging as the most key aroma constituents of MG white tea, endowing MG white tea with fruity and floral odor notes. This study offered a comprehensive investigation into metabolite changes in MG white tea, contributing valuable insights for the innovation of new white tea products utilizing albino tea plant mutants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of glycosidases and GSH pretreatments, fermentation temperatures, and aging time on the physicochemical, organic acids, and aroma profiles of perry. Multi-Omics analysis reveals the sensory quality and fungal communities of Tibetan teas produced by wet- and dry-piling fermentation. Fabrication and saltiness enhancement of salt hollow particles by interface migration. Fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 improves nutritional quality and volatile profile of sea buckthorn-based cereal beverage. A comprehensive quantitative LC-MS/MS method for rapid gelatin source identification in food products: Comparison with PCR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1