Exploration of antioxidant peptides from crocodile (Crocodylus siamensis) meat using modern information technology: Virtual-screening and antioxidant mechanisms.
Zhang Mengli, Luo Ji, Luo Cancan, Zang Yanan, Zeng Yuanyuan, Guo Hanyu, Xu Yinghao
{"title":"Exploration of antioxidant peptides from crocodile (Crocodylus siamensis) meat using modern information technology: Virtual-screening and antioxidant mechanisms.","authors":"Zhang Mengli, Luo Ji, Luo Cancan, Zang Yanan, Zeng Yuanyuan, Guo Hanyu, Xu Yinghao","doi":"10.1016/j.foodres.2025.115789","DOIUrl":null,"url":null,"abstract":"<p><p>To develop a safe, stable and easily absorbed new antioxidant peptide. The myofibrillar protein hydrolysates of Siamese crocodile meat were prepared and purified, their free radical scavenging and Fe<sup>2+</sup> chelating ability were determined. The results showed that isolated component 3 of neutral protease hydrolysate (N<sub>3</sub>) had the highest antioxidant activity. Subsequently, liquid chromatography-mass spectrometry was applied to appraise the amino acid sequences within the N<sub>3</sub> component, and 8 novel antioxidant peptides were screened by bioinformatics analysis, the antioxidant test proved that all 8 synthetic peptides had certain antioxidant activity. Among them, there was no significant difference in the DPPH radical scavenging capacity of GWDK, LWDK, ERWP, LGWK and LWAK (P > 0.05), which were higher than that of DFRDY and WYRDD (P < 0.05), the ABTS radical scavenging ability of DFRDY was similar to WYRDD (P > 0.05), but remarkably stronger than that of the other 6 peptides (P < 0.05). Finally, the binding mechanism of 8 novel peptides to Keap1 protein was explored through molecular docking, and it was found that hydrogen bonding and hydrophobic interaction were the primary forces that bind antioxidant peptides to Keap1 protein.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115789"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To develop a safe, stable and easily absorbed new antioxidant peptide. The myofibrillar protein hydrolysates of Siamese crocodile meat were prepared and purified, their free radical scavenging and Fe2+ chelating ability were determined. The results showed that isolated component 3 of neutral protease hydrolysate (N3) had the highest antioxidant activity. Subsequently, liquid chromatography-mass spectrometry was applied to appraise the amino acid sequences within the N3 component, and 8 novel antioxidant peptides were screened by bioinformatics analysis, the antioxidant test proved that all 8 synthetic peptides had certain antioxidant activity. Among them, there was no significant difference in the DPPH radical scavenging capacity of GWDK, LWDK, ERWP, LGWK and LWAK (P > 0.05), which were higher than that of DFRDY and WYRDD (P < 0.05), the ABTS radical scavenging ability of DFRDY was similar to WYRDD (P > 0.05), but remarkably stronger than that of the other 6 peptides (P < 0.05). Finally, the binding mechanism of 8 novel peptides to Keap1 protein was explored through molecular docking, and it was found that hydrogen bonding and hydrophobic interaction were the primary forces that bind antioxidant peptides to Keap1 protein.