Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα

IF 12.8 1区 医学 Q1 HEMATOLOGY Leukemia Pub Date : 2025-02-20 DOI:10.1038/s41375-025-02530-9
Mariko Minami, Teppei Sakoda, Gentaro Kawano, Yu Kochi, Kensuke Sasaki, Takeshi Sugio, Fumiaki Jinnouchi, Kohta Miyawaki, Yuya Kunisaki, Koji Kato, Toshihiro Miyamoto, Koichi Akashi, Yoshikane Kikushige
{"title":"Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα","authors":"Mariko Minami, Teppei Sakoda, Gentaro Kawano, Yu Kochi, Kensuke Sasaki, Takeshi Sugio, Fumiaki Jinnouchi, Kohta Miyawaki, Yuya Kunisaki, Koji Kato, Toshihiro Miyamoto, Koichi Akashi, Yoshikane Kikushige","doi":"10.1038/s41375-025-02530-9","DOIUrl":null,"url":null,"abstract":"<p>Leukemic stem cells (LSCs) of acute myeloid leukemia (AML) can be enriched in the CD34<sup>+</sup>CD38<sup>-</sup> fraction and reconstitute human AML in vivo. However, in acute promyelocytic leukemia (APL), which constitutes 10% of all AML cases and is driven by promyelocytic leukemia-retinoic acid receptor alpha (<i>PML::RARα</i>) fusion genes, the presence of LSCs has long been unidentified because of the difficulty in efficient reconstitution of human APL in vivo. Herein, we show that LSCs of the short-type isoform APL, a subtype of APL defined by different breakpoints of the <i>PML</i> gene, concentrate in the CD34<sup>+</sup>CD38<sup>−</sup> fraction and express T cell immunoglobulin mucin-3 (TIM-3). Short-type APL cells exhibited distinct gene expression signatures, including LSC-related genes, compared to the other types of APL. Moreover, CD34<sup>+</sup>CD38<sup>−</sup>TIM-3<sup>+</sup> short-type APL cells efficiently reconstituted human APL in xenograft models with high penetration, whereas CD34<sup>−</sup> differentiated APL cells did not. Furthermore, CD34<sup>+</sup>CD38<sup>−</sup>TIM-3<sup>+</sup> short-type APL cells reconstituted leukemia cells after serial transplantation. Thus, short-type APL was hierarchically organized by self-renewing APL-LSCs. The identification of LSCs in a subset of APL and establishment of an efficient patient-derived xenograft model may contribute to further understanding the APL leukemogenesis and devise individual treatments for the eradication of APL LSCs.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"505 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02530-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leukemic stem cells (LSCs) of acute myeloid leukemia (AML) can be enriched in the CD34+CD38- fraction and reconstitute human AML in vivo. However, in acute promyelocytic leukemia (APL), which constitutes 10% of all AML cases and is driven by promyelocytic leukemia-retinoic acid receptor alpha (PML::RARα) fusion genes, the presence of LSCs has long been unidentified because of the difficulty in efficient reconstitution of human APL in vivo. Herein, we show that LSCs of the short-type isoform APL, a subtype of APL defined by different breakpoints of the PML gene, concentrate in the CD34+CD38 fraction and express T cell immunoglobulin mucin-3 (TIM-3). Short-type APL cells exhibited distinct gene expression signatures, including LSC-related genes, compared to the other types of APL. Moreover, CD34+CD38TIM-3+ short-type APL cells efficiently reconstituted human APL in xenograft models with high penetration, whereas CD34 differentiated APL cells did not. Furthermore, CD34+CD38TIM-3+ short-type APL cells reconstituted leukemia cells after serial transplantation. Thus, short-type APL was hierarchically organized by self-renewing APL-LSCs. The identification of LSCs in a subset of APL and establishment of an efficient patient-derived xenograft model may contribute to further understanding the APL leukemogenesis and devise individual treatments for the eradication of APL LSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Leukemia
Leukemia 医学-血液学
CiteScore
18.10
自引率
3.50%
发文量
270
审稿时长
3-6 weeks
期刊介绍: Title: Leukemia Journal Overview: Publishes high-quality, peer-reviewed research Covers all aspects of research and treatment of leukemia and allied diseases Includes studies of normal hemopoiesis due to comparative relevance Topics of Interest: Oncogenes Growth factors Stem cells Leukemia genomics Cell cycle Signal transduction Molecular targets for therapy And more Content Types: Original research articles Reviews Letters Correspondence Comments elaborating on significant advances and covering topical issues
期刊最新文献
Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα Donor selection in T-cell-replete haploidentical donor peripheral blood stem cell transplantation Nelarabine in T-cell acute lymphoblastic leukemia: intracellular metabolism and molecular mode-of-action Improved prognosis of advanced-stage extranodal NK/T-cell lymphoma: results of the NKEA-Next study Phase 1 study of lintuzumab-Ac225 combined with CLAG-M salvage therapy in relapsed/refractory acute myeloid leukemia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1