{"title":"Phonon Thermal Hall Effect in Mott Insulators via Skew Scattering by the Scalar Spin Chirality","authors":"Taekoo Oh, Naoto Nagaosa","doi":"10.1103/physrevx.15.011036","DOIUrl":null,"url":null,"abstract":"Thermal transport is a crucial probe for studying excitations in insulators. In Mott insulators, the primary candidates for heat carriers are spins and phonons; which of these candidates dominates the thermal conductivity is a persistent issue. Typically, phonons dominate the longitudinal thermal conductivity while the thermal Hall effect (THE) is primarily associated with spins, requiring time-reversal symmetry breaking. The coupling between phonons and spins usually depends on spin-orbit interactions and is relatively weak. Here, we propose a new mechanism for this coupling and the associated THE: the skew scattering of phonons via spin fluctuations by the scalar spin chirality. This coupling does not require spin-orbit interactions and is ubiquitous in Mott insulators, leading to a thermal Hall angle on the order of 10</a:mn>−</a:mo>3</a:mn></a:mrow></a:msup></a:math> to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msup><c:mn>10</c:mn><c:mrow><c:mo>−</c:mo><c:mn>2</c:mn></c:mrow></c:msup></c:math>. Based on this mechanism, we investigate the THE in <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>YMnO</e:mi></e:mrow><e:mrow><e:mn>3</e:mn></e:mrow></e:msub></e:mrow></e:math> with a trimerized triangular lattice where the THE beyond spins was recognized, and we predict the THE in the kagome and square lattices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"89 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011036","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal transport is a crucial probe for studying excitations in insulators. In Mott insulators, the primary candidates for heat carriers are spins and phonons; which of these candidates dominates the thermal conductivity is a persistent issue. Typically, phonons dominate the longitudinal thermal conductivity while the thermal Hall effect (THE) is primarily associated with spins, requiring time-reversal symmetry breaking. The coupling between phonons and spins usually depends on spin-orbit interactions and is relatively weak. Here, we propose a new mechanism for this coupling and the associated THE: the skew scattering of phonons via spin fluctuations by the scalar spin chirality. This coupling does not require spin-orbit interactions and is ubiquitous in Mott insulators, leading to a thermal Hall angle on the order of 10−3 to 10−2. Based on this mechanism, we investigate the THE in YMnO3 with a trimerized triangular lattice where the THE beyond spins was recognized, and we predict the THE in the kagome and square lattices. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.