{"title":"Axion minicluster halo limits from wide binary disruption","authors":"Zihang Wang, Yu Gao","doi":"10.1103/physrevd.111.043042","DOIUrl":null,"url":null,"abstract":"Axionic dark matter can form miniclusters and minicluster halos (MCHs) from inhomogeneities in the early Universe. If MCHs are sufficiently massive, then their existence can be revealed by small-scale gravitational tidal perturbation to halolike wide binary star systems in the Galaxy. The observed population of the Milky Way’s wide-separation binaries with a</a:mi>≳</a:mo>0.1</a:mn></a:math> parsec offer a sensitive test to dynamic evaporation from MCHs. Considering data from recent GAIA observations, we derive significant constraints on the MCH fraction of the Galactic dark matter halo. For several scenarios including dense MCHs and isolated minicluster models, these limits will apply to axionlike particles in the mass range <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>m</c:mi></c:mrow><c:mrow><c:mi>a</c:mi></c:mrow></c:msub><c:mo>∼</c:mo><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>15</c:mn></c:mrow></c:msup><c:mi>–</c:mi><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>12</c:mn></c:mrow></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>eV</c:mi></c:mrow></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>a</e:mi></e:mrow></e:msub><e:mo>∼</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>19</e:mn></e:mrow></e:msup><e:mi>–</e:mi><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>16</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi>eV</e:mi></e:mrow></e:math>, respectively. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"2 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.043042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Axionic dark matter can form miniclusters and minicluster halos (MCHs) from inhomogeneities in the early Universe. If MCHs are sufficiently massive, then their existence can be revealed by small-scale gravitational tidal perturbation to halolike wide binary star systems in the Galaxy. The observed population of the Milky Way’s wide-separation binaries with a≳0.1 parsec offer a sensitive test to dynamic evaporation from MCHs. Considering data from recent GAIA observations, we derive significant constraints on the MCH fraction of the Galactic dark matter halo. For several scenarios including dense MCHs and isolated minicluster models, these limits will apply to axionlike particles in the mass range ma∼10−15–10−12eV and ma∼10−19–10−16eV, respectively. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.