Effects of Vegetation on Runoff Hydrodynamics and Erosion Morphologies in Headcut Erosion Processes in the Loess Tableland Region

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-02-19 DOI:10.1029/2024wr038274
Yibao Lou, Yanan Zhu, Jie Wei, Wenlong Wang, Mingming Guo, Hongliang Kang, Lanqian Feng, Hao Yang
{"title":"Effects of Vegetation on Runoff Hydrodynamics and Erosion Morphologies in Headcut Erosion Processes in the Loess Tableland Region","authors":"Yibao Lou, Yanan Zhu, Jie Wei, Wenlong Wang, Mingming Guo, Hongliang Kang, Lanqian Feng, Hao Yang","doi":"10.1029/2024wr038274","DOIUrl":null,"url":null,"abstract":"Vegetation significantly affects the soil properties and runoff processes of gully head systems, thereby affecting their development. However, the mechanisms underlying the effects of vegetation on gully headcut erosion remain unclear. To explore these mechanisms, a series of simulation experiments were carried out on plots with four types of vegetation and bare land (BL). The results revealed that vegetation reduces the runoff velocity in the upstream area (Vup), gully head brink (Vbrink), and gully bed (Vbed) areas by 15%–70%, 3%–54%, and 1%–30%, respectively, and that vegetation type impacts Vup, with no obvious impacts on Vbrink, the jet flow velocity (Vjet) or Vbed. Vegetation reduced the jet flow shear stress (τ<sub>jet</sub>) under low inflow discharge, but under high inflow discharge, it increased τ<sub>jet</sub>. Different vegetation types exhibited different effects on the increase in the Darcy–Weisbach friction factor (<i>f</i>) and Manning roughness coefficient (<i>n</i>) in the upstream area, whereas the effect of vegetation on the <i>f</i> and <i>n</i> value of the gully bed was not obvious. Vegetation reduced the gully head retreat length. Compared with BL, vegetation reduced the rate of soil loss by 31%–95%. Vegetation significantly and directly affects soil characteristics, hydrodynamic parameters, and gully head morphology. The gully head morphology significantly and directly influences the soil loss rate, which ultimately affected the length of gully head retreat. These findings contribute to a deeper understanding of the role of vegetation in gully headcut erosion, offering a scientific foundation for the implementation of preventive measures against such erosion.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"37 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038274","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation significantly affects the soil properties and runoff processes of gully head systems, thereby affecting their development. However, the mechanisms underlying the effects of vegetation on gully headcut erosion remain unclear. To explore these mechanisms, a series of simulation experiments were carried out on plots with four types of vegetation and bare land (BL). The results revealed that vegetation reduces the runoff velocity in the upstream area (Vup), gully head brink (Vbrink), and gully bed (Vbed) areas by 15%–70%, 3%–54%, and 1%–30%, respectively, and that vegetation type impacts Vup, with no obvious impacts on Vbrink, the jet flow velocity (Vjet) or Vbed. Vegetation reduced the jet flow shear stress (τjet) under low inflow discharge, but under high inflow discharge, it increased τjet. Different vegetation types exhibited different effects on the increase in the Darcy–Weisbach friction factor (f) and Manning roughness coefficient (n) in the upstream area, whereas the effect of vegetation on the f and n value of the gully bed was not obvious. Vegetation reduced the gully head retreat length. Compared with BL, vegetation reduced the rate of soil loss by 31%–95%. Vegetation significantly and directly affects soil characteristics, hydrodynamic parameters, and gully head morphology. The gully head morphology significantly and directly influences the soil loss rate, which ultimately affected the length of gully head retreat. These findings contribute to a deeper understanding of the role of vegetation in gully headcut erosion, offering a scientific foundation for the implementation of preventive measures against such erosion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Increasing Large Precipitation Events and Low Available Water Holding Capacity Create the Conditions for Dry Land-Atmosphere Feedbacks in the Northeastern United States Investigating the Characteristics and Drivers of Slow Droughts and Flash Droughts: A Multi-Temporal Scale Drought Identification Framework Mechanisms of Solute Transport in Ice-Supersaturated Debris: 2. Rock Glacier Hydrology in Alpine Glacial-Periglacial Systems Using Water Level Responses to Atmospheric Pressure Variations to Measure and Monitor Vertical Leakage Through Confining Units, With Application to the Jurassic Shaximiao Crust, China The Formation Process, Mechanism, and Attribution of Urban Impervious Surface Thermal Runoff
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1