Efficient fabrication of hunting trap inspired degradable film with enhancing antimicrobial activity and reducing fomite transmission

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-02-20 DOI:10.1016/j.jhazmat.2025.137682
Yu Du, Kai Mu, Xiaolong Li, Cheng Li, Chao Ding, Pingxu Chen, Ting Wu, Heng Xie, Jinping Qu
{"title":"Efficient fabrication of hunting trap inspired degradable film with enhancing antimicrobial activity and reducing fomite transmission","authors":"Yu Du, Kai Mu, Xiaolong Li, Cheng Li, Chao Ding, Pingxu Chen, Ting Wu, Heng Xie, Jinping Qu","doi":"10.1016/j.jhazmat.2025.137682","DOIUrl":null,"url":null,"abstract":"The extensive application of medical protective polymers has significantly contributed to preserving human lives and well-being. Due to the widespread use of protective polymer materials and their non-degradable nature, environmental and biological pollution issues are becoming increasingly severe. To address the environmental pollution problems caused by traditional polymer materials, this study proposes an efficient and successive method for the mass production of polylactic acid/graphene oxide (MNPG) films with the hunting trap-inspired pyramidal micro/nanostructure by combining micro-extrusion compression molding and electrostatic flocking. The hunting trap-inspired pyramidal micro/nanostructure enhances liquid repellency and antibacterial performance, effectively reducing contaminant adhesion. The MNPG film exhibits an impressive antibacterial efficacy, inhibiting bacterial growth by up to 98.1%, demonstrating excellent repellency against common liquids, such as blood, bovine serum albumin, milk, and tea, leaving no detectable residue. This provides initial protection against bacterial adhesion and dissemination as well as the spread of pollutants. Importantly, the film retains only 30<!-- --> <!-- -->wt% of its original mass after 14 days in degradation experiments, indicating favorable biodegradability. This method offers a novel approach for designing sustainable protective materials and holds potential to replace traditional non-degradable polymers.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"50 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137682","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive application of medical protective polymers has significantly contributed to preserving human lives and well-being. Due to the widespread use of protective polymer materials and their non-degradable nature, environmental and biological pollution issues are becoming increasingly severe. To address the environmental pollution problems caused by traditional polymer materials, this study proposes an efficient and successive method for the mass production of polylactic acid/graphene oxide (MNPG) films with the hunting trap-inspired pyramidal micro/nanostructure by combining micro-extrusion compression molding and electrostatic flocking. The hunting trap-inspired pyramidal micro/nanostructure enhances liquid repellency and antibacterial performance, effectively reducing contaminant adhesion. The MNPG film exhibits an impressive antibacterial efficacy, inhibiting bacterial growth by up to 98.1%, demonstrating excellent repellency against common liquids, such as blood, bovine serum albumin, milk, and tea, leaving no detectable residue. This provides initial protection against bacterial adhesion and dissemination as well as the spread of pollutants. Importantly, the film retains only 30 wt% of its original mass after 14 days in degradation experiments, indicating favorable biodegradability. This method offers a novel approach for designing sustainable protective materials and holds potential to replace traditional non-degradable polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Stereoselective Behavior of Naproxen Chiral Enantiomers in Promoting Horizontal Transfer of Antibiotic Resistance Genes Electrochemical membranes for rare earth mine water treatment: sequential removal of rare earth ions and ammonia nitrogen Characterization of per- and polyfluoroalkyl substances (PFASs) in Chinese river and lake sediments Distribution and diversity of microplastics along the aquatic food web in the largest mangrove reserve of China Exploring the Fate of 6PPD in Zebrafish (Danio rerio): Understanding Toxicokinetics, Biotransformation Mechanisms, and Metabolomic Profiling at Environmentally Relevant Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1