Yalda Amirmoezzi, Vanessa Cropley, Sina Mansour L., Caio Seguin, Andrew Zalesky, Ye Ella Tian
{"title":"Characterizing Brain-Cardiovascular Aging Using Multiorgan Imaging and Machine Learning","authors":"Yalda Amirmoezzi, Vanessa Cropley, Sina Mansour L., Caio Seguin, Andrew Zalesky, Ye Ella Tian","doi":"10.1523/jneurosci.1440-24.2024","DOIUrl":null,"url":null,"abstract":"<p>The structure and function of the brain and cardiovascular system change over the lifespan. In this study, we aim to establish the extent to which age-related changes in these two vital organs are linked. Utilizing normative models and data from the UK Biobank, we estimate biological ages for the brain and heart for 2,904 middle-aged and older healthy adults, including both males and females. Biological ages were based on multiple structural, morphological, and functional features derived from brain and cardiovascular imaging modalities. We find that cardiovascular aging, particularly aging of its functional capacity and physiology, is selectively associated with the aging of specific brain networks, including the salience, default mode, and somatomotor networks as well as the subcortex. Our work provides unique insight into brain–heart relationships and may facilitate an improved understanding of the increased co-occurrence of brain and heart diseases in aging.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"51 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.1440-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The structure and function of the brain and cardiovascular system change over the lifespan. In this study, we aim to establish the extent to which age-related changes in these two vital organs are linked. Utilizing normative models and data from the UK Biobank, we estimate biological ages for the brain and heart for 2,904 middle-aged and older healthy adults, including both males and females. Biological ages were based on multiple structural, morphological, and functional features derived from brain and cardiovascular imaging modalities. We find that cardiovascular aging, particularly aging of its functional capacity and physiology, is selectively associated with the aging of specific brain networks, including the salience, default mode, and somatomotor networks as well as the subcortex. Our work provides unique insight into brain–heart relationships and may facilitate an improved understanding of the increased co-occurrence of brain and heart diseases in aging.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles