Improving 1D stellar atmosphere models with insights from multi-dimensional simulations

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-02-19 DOI:10.1051/0004-6361/202452241
G. González-Torà, A. A. C. Sander, J. O. Sundqvist, D. Debnath, L. Delbroek, J. Josiek, R. R. Lefever, N. Moens, C. Van der Sijpt, O. Verhamme
{"title":"Improving 1D stellar atmosphere models with insights from multi-dimensional simulations","authors":"G. González-Torà, A. A. C. Sander, J. O. Sundqvist, D. Debnath, L. Delbroek, J. Josiek, R. R. Lefever, N. Moens, C. Van der Sijpt, O. Verhamme","doi":"10.1051/0004-6361/202452241","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. The outer layers and the spectral appearance of massive stars are inherently affected by radiation pressure. Recent multidimensional, radiation-hydrodynamical (RHD) simulations of massive stellar atmospheres have shed new light on the complexity involved in the surface layers and the onset of radiation-driven winds. These findings include the presence of sub-surface, radiatively driven turbulent motion. For some regimes, the velocities associated with this turbulence and their localisation significantly exceed earlier estimates drawn from stellar structure models. This prompts the question of whether spectral diagnostics obtained with the typical assumptions in 1D spherically symmetric and stationary atmospheres are still sufficient.<i>Aims<i/>. For the foreseeable future, the inherent computation costs and necessary approximations will pose challenges to the common usage of multi-dimensional, time-dependent atmosphere models in the quantitative spectral analysis of populations of stars. Therefore, suitable approximations of multi-dimensional simulation results need to be implemented into 1D atmosphere models.<i>Methods<i/>. We compared current 1D and multi-dimensional atmosphere modelling approaches to understand their strengths and shortcomings. We calculated the averaged stratifications from selected multi-dimensional calculations for O stars – corresponding to spectral types O8, O4, and O2, with log 𝑔 ∼ 3.7 – to approximate them with 1D stellar atmosphere models using the PoWR model atmosphere code and assuming a fixed <i>β<i/>–law for the wind regime. We then studied the effects of our approximations and assumptions on current spectral diagnostics. In particular, we focus on the impact of an additional turbulent pressure in the subsonic layers of the 1D models.<i>Results<i/>. To match the 2D averages, the 1D stellar atmosphere models need to account for turbulent pressure in the hydrostatic equation. Moreover, an adjustment of the connection point between the (quasi)hydrostatic regime and the wind regime is required. The improvement between the density stratification of the 1D model and 2D average can be further increased if the mass-loss rate of the 1D model is not identical to that of the 2D simulation; rather, it is typically ∼0.2 dex higher. Especially in the case of an early-type star, this would imply a significantly more extended envelope with a lower effective temperature.<i>Conclusions<i/>. Already, the inclusion of a constant turbulence term in the solution of the hydrostatic equation is shown to sufficiently reproduce the 2D-averaged model density stratifications. The addition of a significant turbulent motion also smoothens the slope of the radiative acceleration term in the (quasi)hydrostatic domain, with several potential implications on the total mass-loss rate inferred from 1D modelling. Concerning the spectral synthesis, the addition of a turbulence term in the hydrostatic equation mimics the effect of a lower surface gravity, potentially presenting a solution to the ‘mass discrepancy problem’ between the evolutionary and spectroscopy mass determinations.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"17 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452241","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The outer layers and the spectral appearance of massive stars are inherently affected by radiation pressure. Recent multidimensional, radiation-hydrodynamical (RHD) simulations of massive stellar atmospheres have shed new light on the complexity involved in the surface layers and the onset of radiation-driven winds. These findings include the presence of sub-surface, radiatively driven turbulent motion. For some regimes, the velocities associated with this turbulence and their localisation significantly exceed earlier estimates drawn from stellar structure models. This prompts the question of whether spectral diagnostics obtained with the typical assumptions in 1D spherically symmetric and stationary atmospheres are still sufficient.Aims. For the foreseeable future, the inherent computation costs and necessary approximations will pose challenges to the common usage of multi-dimensional, time-dependent atmosphere models in the quantitative spectral analysis of populations of stars. Therefore, suitable approximations of multi-dimensional simulation results need to be implemented into 1D atmosphere models.Methods. We compared current 1D and multi-dimensional atmosphere modelling approaches to understand their strengths and shortcomings. We calculated the averaged stratifications from selected multi-dimensional calculations for O stars – corresponding to spectral types O8, O4, and O2, with log 𝑔 ∼ 3.7 – to approximate them with 1D stellar atmosphere models using the PoWR model atmosphere code and assuming a fixed β–law for the wind regime. We then studied the effects of our approximations and assumptions on current spectral diagnostics. In particular, we focus on the impact of an additional turbulent pressure in the subsonic layers of the 1D models.Results. To match the 2D averages, the 1D stellar atmosphere models need to account for turbulent pressure in the hydrostatic equation. Moreover, an adjustment of the connection point between the (quasi)hydrostatic regime and the wind regime is required. The improvement between the density stratification of the 1D model and 2D average can be further increased if the mass-loss rate of the 1D model is not identical to that of the 2D simulation; rather, it is typically ∼0.2 dex higher. Especially in the case of an early-type star, this would imply a significantly more extended envelope with a lower effective temperature.Conclusions. Already, the inclusion of a constant turbulence term in the solution of the hydrostatic equation is shown to sufficiently reproduce the 2D-averaged model density stratifications. The addition of a significant turbulent motion also smoothens the slope of the radiative acceleration term in the (quasi)hydrostatic domain, with several potential implications on the total mass-loss rate inferred from 1D modelling. Concerning the spectral synthesis, the addition of a turbulence term in the hydrostatic equation mimics the effect of a lower surface gravity, potentially presenting a solution to the ‘mass discrepancy problem’ between the evolutionary and spectroscopy mass determinations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion PANOPTICON: A novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves Exploring quasar evolution with proximate molecular absorbers: Insights from the kinematics of highly ionized nitrogen⋆ Blue monsters at z > 10: Where all their dust has gone Gamma-ray flares from the jet of the blazar CTA 102 in 2016–2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1