Horizontal flows in the atmospheres of chemically peculiar stars

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-02-19 DOI:10.1051/0004-6361/202453189
A. ud-Doula, J. Krtička, B. Kubátová
{"title":"Horizontal flows in the atmospheres of chemically peculiar stars","authors":"A. ud-Doula, J. Krtička, B. Kubátová","doi":"10.1051/0004-6361/202453189","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. Classical chemically peculiar stars exhibit atmospheres that are often structured by the effects of atomic diffusion. As a result of these elemental diffusion and horizontal abundance variations, the photospheric temperature varies at a given height in the atmosphere. This may lead to horizontal flows in the photosphere. In addition, the suppression of such flows by a magnetic field can alter the elemental transport processes.<i>Aims<i/>. Using a simplified model of such a structured atmosphere and 2D magnetohydrodynamic simulations of a typical He-rich star, we examined atmospheric flows in these chemically peculiar stars, which often are strongly magnetic.<i>Methods<i/>. We used Zeus-MP, which is a publicly available Fortran 90-based parallel finite element modular code.<i>Results<i/>. We find that for non-magnetic stars of spectral type BA, the atmospheric flow related to the horizontal temperature gradient can reach 1.0 km s<sup>−1<sup/>, yielding mixing timescales of the order of tens of days. For the magnetic counterparts, the flow speeds are an order of magnitude lower, allowing for the stratification of chemical elements.<i>Conclusions<i/>. Magnetic fields can significantly influence the dynamics in atmospheres. A strong horizontal magnetic field inhibits flow in the vertical direction, while a strong vertical magnetic field can suppress horizontal atmospheric flow and prevent elemental mixing.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"23 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453189","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Classical chemically peculiar stars exhibit atmospheres that are often structured by the effects of atomic diffusion. As a result of these elemental diffusion and horizontal abundance variations, the photospheric temperature varies at a given height in the atmosphere. This may lead to horizontal flows in the photosphere. In addition, the suppression of such flows by a magnetic field can alter the elemental transport processes.Aims. Using a simplified model of such a structured atmosphere and 2D magnetohydrodynamic simulations of a typical He-rich star, we examined atmospheric flows in these chemically peculiar stars, which often are strongly magnetic.Methods. We used Zeus-MP, which is a publicly available Fortran 90-based parallel finite element modular code.Results. We find that for non-magnetic stars of spectral type BA, the atmospheric flow related to the horizontal temperature gradient can reach 1.0 km s−1, yielding mixing timescales of the order of tens of days. For the magnetic counterparts, the flow speeds are an order of magnitude lower, allowing for the stratification of chemical elements.Conclusions. Magnetic fields can significantly influence the dynamics in atmospheres. A strong horizontal magnetic field inhibits flow in the vertical direction, while a strong vertical magnetic field can suppress horizontal atmospheric flow and prevent elemental mixing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion PANOPTICON: A novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves Exploring quasar evolution with proximate molecular absorbers: Insights from the kinematics of highly ionized nitrogen⋆ Blue monsters at z > 10: Where all their dust has gone Gamma-ray flares from the jet of the blazar CTA 102 in 2016–2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1