g-C3N4 Modified MnWO4 nanorods as high-performance electrode materials for asymmetric supercapacitors

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-02-20 DOI:10.1016/j.electacta.2025.145895
Sreeja R, Shahanas T, Harichandran G
{"title":"g-C3N4 Modified MnWO4 nanorods as high-performance electrode materials for asymmetric supercapacitors","authors":"Sreeja R,&nbsp;Shahanas T,&nbsp;Harichandran G","doi":"10.1016/j.electacta.2025.145895","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid nanostructures are transformative in energy storage, offering unparalleled internal and surface properties. However, diffusion-controlled supercapacitors often face challenges like low energy density and poor cycling stability due to sluggish intercalation/deintercalation processes. Here, MnWO<sub>4</sub> nanorods integrated with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) overcome these limitations by enabling a transition from diffusion- to surface-controlled charge storage. The resulting hybrid material achieves an outstanding specific capacitance of 1265 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, retaining 91 % of its initial capacitance after 5000 cycles at 5 A g<sup>−1</sup>. This exceptional performance surpasses that of pure MnWO<sub>4</sub> and MnWO<sub>4</sub> synthesised with surfactants like cetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and sodium lauryl sulfate (SLS). Moreover, the g- C<sub>3</sub>N<sub>4</sub>-modified asymmetric supercapacitor device (GMW//AC ASC) exhibits a remarkable specific capacitance of 77.24 F g<sup>−1</sup>, an energy density of 34.7 W h kg<sup>−1</sup> at a power density of 899.9 W kg<sup>−1</sup>, and an impressive 90 % retention after 5000 cycles. These findings establish g- C<sub>3</sub>N<sub>4</sub>-modified MnWO₄ nanorods as a benchmark for designing advanced electrode materials, unlocking new potential for renewable energy storage technologies.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"521 ","pages":"Article 145895"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625002580","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid nanostructures are transformative in energy storage, offering unparalleled internal and surface properties. However, diffusion-controlled supercapacitors often face challenges like low energy density and poor cycling stability due to sluggish intercalation/deintercalation processes. Here, MnWO4 nanorods integrated with graphitic carbon nitride (g-C3N4) overcome these limitations by enabling a transition from diffusion- to surface-controlled charge storage. The resulting hybrid material achieves an outstanding specific capacitance of 1265 F g−1 at 1 A g−1, retaining 91 % of its initial capacitance after 5000 cycles at 5 A g−1. This exceptional performance surpasses that of pure MnWO4 and MnWO4 synthesised with surfactants like cetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and sodium lauryl sulfate (SLS). Moreover, the g- C3N4-modified asymmetric supercapacitor device (GMW//AC ASC) exhibits a remarkable specific capacitance of 77.24 F g−1, an energy density of 34.7 W h kg−1 at a power density of 899.9 W kg−1, and an impressive 90 % retention after 5000 cycles. These findings establish g- C3N4-modified MnWO₄ nanorods as a benchmark for designing advanced electrode materials, unlocking new potential for renewable energy storage technologies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
g-C3N4修饰的MnWO4纳米棒作为非对称超级电容器的高性能电极材料
混合纳米结构在能量存储方面具有变革性,具有无与伦比的内部和表面特性。然而,由于插/脱插过程缓慢,扩散控制超级电容器经常面临能量密度低和循环稳定性差的挑战。在这里,与石墨化碳氮(g-C3N4)集成的MnWO4纳米棒克服了这些限制,实现了从扩散控制到表面控制的电荷存储的转变。所得到的杂化材料在1 A g-1下获得了1265 F -1的杰出比电容,在5 A g-1下循环5000次后保持了91%的初始电容。这种优异的性能超过了纯MnWO4和用十六烷基三甲基溴化铵(CTAB)、聚乙二醇(PEG)和十二烷基硫酸钠(SLS)等表面活性剂合成的MnWO4。此外,g- c3n4修饰的非对称超级电容器器件(GMW//AC ASC)具有77.24 F - g-1的比电容,在899.9 W kg-1功率密度下的能量密度为34.7 W h kg-1,在5000次循环后保持率高达90%。这些发现确立了g- c3n4修饰的MnWO₄纳米棒作为设计先进电极材料的基准,释放了可再生能源存储技术的新潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Scale-up and Performance Evaluation of an Electrodialysis Process in a Municipal Wastewater Treatment Plant Influence of Porous Transport Layer and Microporous Layer Morphologies on Oxygen Content and Cell Performance for Proton Exchange Membrane Water Electrolyzers with Low Catalyst Loadings Structure-Directed Synthesis of MXene-Supported Co-Based Bimetallic Composites for High-Performance Battery–Supercapacitor Hybrids Electrodeposited V2O5·nH2O Thin Film with Superior Mg2+ Storage and Electrochromic Properites Boron transport and remediation performance in sediment microbial fuel cells via electromigration and synergistic ecosystem interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1