Moritz U. G. Kraemer, Joseph L.-H. Tsui, Serina Y. Chang, Spyros Lytras, Mark P. Khurana, Samantha Vanderslott, Sumali Bajaj, Neil Scheidwasser, Jacob Liam Curran-Sebastian, Elizaveta Semenova, Mengyan Zhang, H. Juliette T. Unwin, Oliver J. Watson, Cathal Mills, Abhishek Dasgupta, Luca Ferretti, Samuel V. Scarpino, Etien Koua, Oliver Morgan, Houriiyah Tegally, Ulrich Paquet, Loukas Moutsianas, Christophe Fraser, Neil M. Ferguson, Eric J. Topol, David A. Duchêne, Tanja Stadler, Patricia Kingori, Michael J. Parker, Francesca Dominici, Nigel Shadbolt, Marc A. Suchard, Oliver Ratmann, Seth Flaxman, Edward C. Holmes, Manuel Gomez-Rodriguez, Bernhard Schölkopf, Christl A. Donnelly, Oliver G. Pybus, Simon Cauchemez, Samir Bhatt
{"title":"Artificial intelligence for modelling infectious disease epidemics","authors":"Moritz U. G. Kraemer, Joseph L.-H. Tsui, Serina Y. Chang, Spyros Lytras, Mark P. Khurana, Samantha Vanderslott, Sumali Bajaj, Neil Scheidwasser, Jacob Liam Curran-Sebastian, Elizaveta Semenova, Mengyan Zhang, H. Juliette T. Unwin, Oliver J. Watson, Cathal Mills, Abhishek Dasgupta, Luca Ferretti, Samuel V. Scarpino, Etien Koua, Oliver Morgan, Houriiyah Tegally, Ulrich Paquet, Loukas Moutsianas, Christophe Fraser, Neil M. Ferguson, Eric J. Topol, David A. Duchêne, Tanja Stadler, Patricia Kingori, Michael J. Parker, Francesca Dominici, Nigel Shadbolt, Marc A. Suchard, Oliver Ratmann, Seth Flaxman, Edward C. Holmes, Manuel Gomez-Rodriguez, Bernhard Schölkopf, Christl A. Donnelly, Oliver G. Pybus, Simon Cauchemez, Samir Bhatt","doi":"10.1038/s41586-024-08564-w","DOIUrl":null,"url":null,"abstract":"Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in economics, medicine and social science, have the potential to transform the scope and power of infectious disease epidemiology. Here we consider the application to infectious disease modelling of AI systems that combine machine learning, computational statistics, information retrieval and data science. We first outline how recent advances in AI can accelerate breakthroughs in answering key epidemiological questions and we discuss specific AI methods that can be applied to routinely collected infectious disease surveillance data. Second, we elaborate on the social context of AI for infectious disease epidemiology, including issues such as explainability, safety, accountability and ethics. Finally, we summarize some limitations of AI applications in this field and provide recommendations for how infectious disease epidemiology can harness most effectively current and future developments in AI. This Perspective considers the application to infectious disease modelling of AI systems that combine machine learning, computational statistics, information retrieval and data science.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8051","pages":"623-635"},"PeriodicalIF":50.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08564-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in economics, medicine and social science, have the potential to transform the scope and power of infectious disease epidemiology. Here we consider the application to infectious disease modelling of AI systems that combine machine learning, computational statistics, information retrieval and data science. We first outline how recent advances in AI can accelerate breakthroughs in answering key epidemiological questions and we discuss specific AI methods that can be applied to routinely collected infectious disease surveillance data. Second, we elaborate on the social context of AI for infectious disease epidemiology, including issues such as explainability, safety, accountability and ethics. Finally, we summarize some limitations of AI applications in this field and provide recommendations for how infectious disease epidemiology can harness most effectively current and future developments in AI. This Perspective considers the application to infectious disease modelling of AI systems that combine machine learning, computational statistics, information retrieval and data science.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.