Shizhen Yin, Han Zhang, Fangfang Shi, Yiming Chen, Chao Zhong, Rui Li, Yewang Su
{"title":"Bendable Phased-Array Ultrasound Transducer for Imaging on Curved Surfaces","authors":"Shizhen Yin, Han Zhang, Fangfang Shi, Yiming Chen, Chao Zhong, Rui Li, Yewang Su","doi":"10.1021/acsnano.4c16028","DOIUrl":null,"url":null,"abstract":"Flexible phased-array ultrasound transducers (PAUTs), promising for nondestructive testing in biomedical and industrial applications, are classified as stretchable or bendable. Stretchable PAUTs offer a superior solution for complex curved surfaces but face substantial variations in piezoelectric element pitches, particularly on surfaces with small radii, complicating position correction algorithms. Meanwhile, real-time measurement of the pitches remains a technical difficulty. In contrast, bendable PAUTs with limited variable pitches are currently more practical for engineering applications. This paper introduces an innovative bendable PAUT featuring a constant-pitch-preservation (CPP) design. It includes a flexible 12 × 12 piezo-composite element array bonded with silicone, allowing conformity to surfaces with varying curvatures while maintaining constant element pitches. This design enables accurate progressive time delays for precise ultrasound beam steering and focusing. Individual backing and matching blocks for each piezoelectric element enhance detection performance. Experimental results from pulse-echo inspections and sector scans validate its effectiveness in high-quality imaging.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible phased-array ultrasound transducers (PAUTs), promising for nondestructive testing in biomedical and industrial applications, are classified as stretchable or bendable. Stretchable PAUTs offer a superior solution for complex curved surfaces but face substantial variations in piezoelectric element pitches, particularly on surfaces with small radii, complicating position correction algorithms. Meanwhile, real-time measurement of the pitches remains a technical difficulty. In contrast, bendable PAUTs with limited variable pitches are currently more practical for engineering applications. This paper introduces an innovative bendable PAUT featuring a constant-pitch-preservation (CPP) design. It includes a flexible 12 × 12 piezo-composite element array bonded with silicone, allowing conformity to surfaces with varying curvatures while maintaining constant element pitches. This design enables accurate progressive time delays for precise ultrasound beam steering and focusing. Individual backing and matching blocks for each piezoelectric element enhance detection performance. Experimental results from pulse-echo inspections and sector scans validate its effectiveness in high-quality imaging.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.