Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in Paenibacillus polymyxa NBRC3020 Strain

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-17 DOI:10.1021/acschembio.4c0055310.1021/acschembio.4c00553
Mai Nemoto, Wataru Ando, Taichi Mano, Minjae Lee, Satoshi Yuzawa and Toshihisa Mizuno*, 
{"title":"Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in Paenibacillus polymyxa NBRC3020 Strain","authors":"Mai Nemoto,&nbsp;Wataru Ando,&nbsp;Taichi Mano,&nbsp;Minjae Lee,&nbsp;Satoshi Yuzawa and Toshihisa Mizuno*,&nbsp;","doi":"10.1021/acschembio.4c0055310.1021/acschembio.4c00553","DOIUrl":null,"url":null,"abstract":"<p >Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating <span>l</span>-2,4-diaminobutyric acid (<span>l</span>-Dab) within the synthetase of polymyxin, an NRP produced by <i>Paenibacillus polymyxa</i> NBRC3020. To date, investigations into recombinant proteins that selectively adenylate <span>l</span>-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing <span>l</span>-Dab homopolymers (pldA from <i>S. celluloflavus</i> USE31 and pddA from <i>S. hindustanus</i> NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to <span>l</span>-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in <i>E. coli</i> BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for <span>l</span>-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of <span>l</span>-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of <i>P. polymyxa</i> NBRC3020 but also in those of the <i>P. polymyxa</i> PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of <span>l</span>-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for <span>l</span>-Dab recognition.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 2","pages":"321–331 321–331"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.4c00553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by Paenibacillus polymyxa NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from S. celluloflavus USE31 and pddA from S. hindustanus NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to l-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in E. coli BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for l-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of l-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of P. polymyxa NBRC3020 but also in those of the P. polymyxa PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of l-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for l-Dab recognition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Introducing Our Authors Issue Publication Information Issue Editorial Masthead Multi-TACs: Targeting Solid Tumors with Multiple Immune Cell Co-engagers. Amide Internucleoside Linkages Suppress the MicroRNA-like Off-Target Activity of Short Interfering RNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1