Superheated flash-boiling atomisation effects on spray carbon capture performance using non-aqueous amines

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-02-20 DOI:10.1016/j.fuel.2025.134712
Louis F. Dacanay , Kevin Wan , Julien Manin , Guillaume De Sercey , Peter J. Cragg , Alain Ledoux , Lionel Estel , Cyril Crua
{"title":"Superheated flash-boiling atomisation effects on spray carbon capture performance using non-aqueous amines","authors":"Louis F. Dacanay ,&nbsp;Kevin Wan ,&nbsp;Julien Manin ,&nbsp;Guillaume De Sercey ,&nbsp;Peter J. Cragg ,&nbsp;Alain Ledoux ,&nbsp;Lionel Estel ,&nbsp;Cyril Crua","doi":"10.1016/j.fuel.2025.134712","DOIUrl":null,"url":null,"abstract":"<div><div>There is an urgent need to develop energy and space efficient carbon capture technologies for hard to decarbonise sectors. While spray-based carbon capture systems can offer high CO<sub>2</sub> absorption rates compared to packed columns, their optimisation requires fine control on spray homogeneity and droplet properties such as size and relative velocity. More specifically, denser mono-disperse sprays with micron scale droplets have been found to increase the rate of CO<sub>2</sub> absorption due to increased surface area for mass transfer. One approach that has not previously been investigated is to control the solvent spray properties through flash boiling atomisation to consistently produce fine and homogeneous droplets. To address this gap, we present optical measurements comparing the performance of solvents atomised with varying degrees of flash boiling. Diffuse-back illumination extinction imaging was used for temporal characterisation of spray morphology. We tested a 20:80 (<span><math><mtext>%</mtext></math></span> w/w) blend of triethanolamine and methanol, and neat isopropylamine under six temperature conditions to vary the amount of superheat. Absorption capacities, molar absorption rates, and CO<sub>2</sub> percentage removal are reported for each test condition, showing significant improvements at the higher temperature conditions where flash boiling was more intense. While flash boiling carbon capture carries a higher energy demand than conventional technologies, our results offer an innovative and promising avenue for high-efficiency CO<sub>2</sub> absorption in hard-to-abate sectors such as marine transportation, especially when coupled with a waste heat recovery strategy.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"391 ","pages":"Article 134712"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125004363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

There is an urgent need to develop energy and space efficient carbon capture technologies for hard to decarbonise sectors. While spray-based carbon capture systems can offer high CO2 absorption rates compared to packed columns, their optimisation requires fine control on spray homogeneity and droplet properties such as size and relative velocity. More specifically, denser mono-disperse sprays with micron scale droplets have been found to increase the rate of CO2 absorption due to increased surface area for mass transfer. One approach that has not previously been investigated is to control the solvent spray properties through flash boiling atomisation to consistently produce fine and homogeneous droplets. To address this gap, we present optical measurements comparing the performance of solvents atomised with varying degrees of flash boiling. Diffuse-back illumination extinction imaging was used for temporal characterisation of spray morphology. We tested a 20:80 (% w/w) blend of triethanolamine and methanol, and neat isopropylamine under six temperature conditions to vary the amount of superheat. Absorption capacities, molar absorption rates, and CO2 percentage removal are reported for each test condition, showing significant improvements at the higher temperature conditions where flash boiling was more intense. While flash boiling carbon capture carries a higher energy demand than conventional technologies, our results offer an innovative and promising avenue for high-efficiency CO2 absorption in hard-to-abate sectors such as marine transportation, especially when coupled with a waste heat recovery strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Formation mechanism of liquid hydrocarbon products of type III kerogen: Insights from temperature-based semi-open pyrolysis Effects of wedge geometric parameters on flow characteristics of oblique detonation waves in a non-premixed mixture On the thermal degradation of palm frond and PLA 3251D biopolymer: TGA/FTIR experimentation, thermo-kinetics, and machine learning CDNN analysis Upgrading biogas to metgas by bi-reforming over Y2O3 modified Ni/h-BN nanocatalysts Ni- and Co-based catalysts via alloying Ni and Co with Sn species for selective conversion of vanillin through tailoring hydrogenation and deoxygenation activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1