Yanjun Guan , Zhibo Jia , Xing Xiong , Ruichao He , Yiben Ouyang , Haolin Liu , Lijing Liang , Xiaoran Meng , Ranran Zhang , Congcong Guan , Sice Wang , Dongdong Li , Yuhui Cui , Jun Bai , Jinjuan Zhao , Haoye Meng , Jiang Peng , Yu Wang
{"title":"Tissue-specific extracellular matrix for the larger-scaled expansion of spinal cord organoids","authors":"Yanjun Guan , Zhibo Jia , Xing Xiong , Ruichao He , Yiben Ouyang , Haolin Liu , Lijing Liang , Xiaoran Meng , Ranran Zhang , Congcong Guan , Sice Wang , Dongdong Li , Yuhui Cui , Jun Bai , Jinjuan Zhao , Haoye Meng , Jiang Peng , Yu Wang","doi":"10.1016/j.mtbio.2025.101561","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord organoids (SCOs) are in vitro models that faithfully recapitulate the basic tissue architecture and cell types of the spinal cord and play a crucial role in developmental studies, disease modeling, and drug screening. Physiological cues are required for proliferation and differentiation during SCO culture. However, commonly used basement membrane matrix products, such as Matrigel®, lack tissue-specific biophysical signals. The current study utilizes decellularization process to fabricate tissue-derived hydrogel from porcine spinal cord tissue that retain intrinsic matrix components. This gel system supported an expanded neuroepithelial scale and enhanced ventral recognition patterns during SCO cultivation. Based on the characteristics of the enlarged aggregate size, a technical system for SCO cutting and subculture are proposed to improve the economic feasibility. Finally, the advantage of S-gel in maintaining neurite outgrowth are also found, which suggests its potential application in neural-related microphysiological systems.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101561"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000642500119X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord organoids (SCOs) are in vitro models that faithfully recapitulate the basic tissue architecture and cell types of the spinal cord and play a crucial role in developmental studies, disease modeling, and drug screening. Physiological cues are required for proliferation and differentiation during SCO culture. However, commonly used basement membrane matrix products, such as Matrigel®, lack tissue-specific biophysical signals. The current study utilizes decellularization process to fabricate tissue-derived hydrogel from porcine spinal cord tissue that retain intrinsic matrix components. This gel system supported an expanded neuroepithelial scale and enhanced ventral recognition patterns during SCO cultivation. Based on the characteristics of the enlarged aggregate size, a technical system for SCO cutting and subculture are proposed to improve the economic feasibility. Finally, the advantage of S-gel in maintaining neurite outgrowth are also found, which suggests its potential application in neural-related microphysiological systems.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).