QRAVDR: A deep Q-learning-based RSU-Assisted Video Data Routing algorithm for VANETs

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2025-02-19 DOI:10.1016/j.adhoc.2025.103790
Huahong Ma, Shuangjin Li, Honghai Wu, Ling Xing, Xiaohui Zhang
{"title":"QRAVDR: A deep Q-learning-based RSU-Assisted Video Data Routing algorithm for VANETs","authors":"Huahong Ma,&nbsp;Shuangjin Li,&nbsp;Honghai Wu,&nbsp;Ling Xing,&nbsp;Xiaohui Zhang","doi":"10.1016/j.adhoc.2025.103790","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of Internet of Vehicles (IoV) and the increasing demand for video services, video data routing in Vehicular Ad-hoc Networks (VANETs) has become a popular research topic. Challenges such as real-time transmission demands, instability of wireless channels, and high network topology dynamics significantly affect video transmission quality. Although some related studies have used multipath transmission and priority scheduling to improve performance, they usually require accurate models or use a static approach to make decisions, which lack the learning mechanism and the ability to adapt to the dynamic network, resulting in poor video reconstruction quality. To address the above problems, A Deep Q-Learning (DQL)-based RoadSide Unit (RSU)-Assisted Video Data Routing algorithm, named QRAVDR, is proposed for urban VANET environments. The algorithm coordinates the forwarding road segments of different layers of Scalable Video Coding (SVC) video data at the RSUs through DQL, maximizing the video quality at the receiver while minimizing the transmission delay. The Neutrosophic Set Analytic Hierarchy Process method is applied to select the best relay vehicle within the road segments, which guarantees the transmission of keyframes and improves the decoding possibility. Extensive simulation experiments on QRAVDR and other existing algorithms have been conducted using NS-2 employing simulated datasets. The results show that QRAVDR achieves a better overall performance in improving the average frame delivery ratio by about 8.02%, reducing the average end-to-end delay by approximately 9.61%, and improving the average peak signal-to-noise ratio by roughly 7.97%.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"171 ","pages":"Article 103790"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000381","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of Internet of Vehicles (IoV) and the increasing demand for video services, video data routing in Vehicular Ad-hoc Networks (VANETs) has become a popular research topic. Challenges such as real-time transmission demands, instability of wireless channels, and high network topology dynamics significantly affect video transmission quality. Although some related studies have used multipath transmission and priority scheduling to improve performance, they usually require accurate models or use a static approach to make decisions, which lack the learning mechanism and the ability to adapt to the dynamic network, resulting in poor video reconstruction quality. To address the above problems, A Deep Q-Learning (DQL)-based RoadSide Unit (RSU)-Assisted Video Data Routing algorithm, named QRAVDR, is proposed for urban VANET environments. The algorithm coordinates the forwarding road segments of different layers of Scalable Video Coding (SVC) video data at the RSUs through DQL, maximizing the video quality at the receiver while minimizing the transmission delay. The Neutrosophic Set Analytic Hierarchy Process method is applied to select the best relay vehicle within the road segments, which guarantees the transmission of keyframes and improves the decoding possibility. Extensive simulation experiments on QRAVDR and other existing algorithms have been conducted using NS-2 employing simulated datasets. The results show that QRAVDR achieves a better overall performance in improving the average frame delivery ratio by about 8.02%, reducing the average end-to-end delay by approximately 9.61%, and improving the average peak signal-to-noise ratio by roughly 7.97%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
An optimizing geo-distributed edge layering with double deep Q-networks for predictive mobility-aware offloading in mobile edge computing QRAVDR: A deep Q-learning-based RSU-Assisted Video Data Routing algorithm for VANETs NOMA-based intelligent resource allocation and trajectory optimization for multi-UAVs assisted semantic communication networks URNFresh: Age-of-infomation-based 60 GHz UAV relay networks for video surveillance in linear environments Fast convergent actor–critic reinforcement learning based interference coordination algorithm in D2D networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1