Elaheh Yaghoubi , Elnaz Yaghoubi , Mohammad Reza Maghami , Mehdi Zareian Jahromi
{"title":"Comprehensive technical risk indices and advanced methodologies for power system risk management","authors":"Elaheh Yaghoubi , Elnaz Yaghoubi , Mohammad Reza Maghami , Mehdi Zareian Jahromi","doi":"10.1016/j.epsr.2025.111534","DOIUrl":null,"url":null,"abstract":"<div><div>In a dynamic and complex power system landscape, accurately assessing and mitigating technical risks is essential for ensuring a reliable and secure electricity supply. Despite advancement, significant research gaps persist in understanding the broader trends of risk analysis and exploring comprehensive technical risk indices. Existing studies often focus narrowly on specific measures, overlooking evolving dynamics in power systems risk management. This review addresses these gaps by systematically examining a range of risk measures, including underexplored indices such as loss of load expectation (LOLE), expected unserved energy (EUE), load ability limits (LAL), and energy expected not served (EENS), alongside commonly studied indices like voltage devotion and resilience. The review systematically addresses this challenge through three sections, ensuring a logical progression from introduction to analysis and findings. LOLE estimates the likelihood of power supply shortages, while EUE quantifies the expected energy not delivered due to outages. Additionally, underexplored metrics LAL and EENS analysis provide a more holistic view of system vulnerabilities. The study employs systematic reviews with bibliometrics analysis to identify key challenges, analyze academic research trends, and introduce methodologies, like failure mode and effects analysis (FMEA). FMEA identifies potential failure points, assesses their impacts, and integrates uncertainty and reliability into risk analysis, offering valuable insights into power system vulnerabilities. This approach ensures a detailed understanding of vulnerability, allowing for proactive measures in system reliability. The review is structured into three sections: an introduction to common technical risk indices, an exploration of challenges in current risk management, and an assessment of novel methodologies and their practical implications. Findings emphasize that indices like LOLE and EUE receive less attention compared to metrics like resilience and uncertainty. Furthermore, cost and time considerations in risk evaluation remain underexplored. This paper offers actionable insights for power companies to optimize operational planning and prioritize investments and enhance system reliability. Integrating underutilized indices with innovative methods like FMEA, this article provides a novel risk analysis framework that bridges theoretical gaps and supports practical decision-making.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"244 ","pages":"Article 111534"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625001269","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In a dynamic and complex power system landscape, accurately assessing and mitigating technical risks is essential for ensuring a reliable and secure electricity supply. Despite advancement, significant research gaps persist in understanding the broader trends of risk analysis and exploring comprehensive technical risk indices. Existing studies often focus narrowly on specific measures, overlooking evolving dynamics in power systems risk management. This review addresses these gaps by systematically examining a range of risk measures, including underexplored indices such as loss of load expectation (LOLE), expected unserved energy (EUE), load ability limits (LAL), and energy expected not served (EENS), alongside commonly studied indices like voltage devotion and resilience. The review systematically addresses this challenge through three sections, ensuring a logical progression from introduction to analysis and findings. LOLE estimates the likelihood of power supply shortages, while EUE quantifies the expected energy not delivered due to outages. Additionally, underexplored metrics LAL and EENS analysis provide a more holistic view of system vulnerabilities. The study employs systematic reviews with bibliometrics analysis to identify key challenges, analyze academic research trends, and introduce methodologies, like failure mode and effects analysis (FMEA). FMEA identifies potential failure points, assesses their impacts, and integrates uncertainty and reliability into risk analysis, offering valuable insights into power system vulnerabilities. This approach ensures a detailed understanding of vulnerability, allowing for proactive measures in system reliability. The review is structured into three sections: an introduction to common technical risk indices, an exploration of challenges in current risk management, and an assessment of novel methodologies and their practical implications. Findings emphasize that indices like LOLE and EUE receive less attention compared to metrics like resilience and uncertainty. Furthermore, cost and time considerations in risk evaluation remain underexplored. This paper offers actionable insights for power companies to optimize operational planning and prioritize investments and enhance system reliability. Integrating underutilized indices with innovative methods like FMEA, this article provides a novel risk analysis framework that bridges theoretical gaps and supports practical decision-making.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.