Comparative analysis of structural and mechanical properties of duplex stainless steel (DSS) weldments prepared by flux core arc welding and shielded metal arch welding processes

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2025-02-18 DOI:10.1016/j.jajp.2025.100295
E. Ajenifuja , A.P.I. Popoola , O. Popoola
{"title":"Comparative analysis of structural and mechanical properties of duplex stainless steel (DSS) weldments prepared by flux core arc welding and shielded metal arch welding processes","authors":"E. Ajenifuja ,&nbsp;A.P.I. Popoola ,&nbsp;O. Popoola","doi":"10.1016/j.jajp.2025.100295","DOIUrl":null,"url":null,"abstract":"<div><div>Duplex stainless steel (DSS) possesses wide range of useful metallographic and mechanical properties; hence the material has been used in different forms of application namely in chloride present environments such as desalination plants and cooling water services such as conventional and nuclear power stations. However, this material has its limitations as it's susceptible to cracking particularly stress corrosion cracking or pitting corrosion and can exhibit poor metallurgical properties such as microstructures and phase containing unbalanced proportions of ferrite and austenite. In this study, Flux Core Arc Welding (FCAW) is compared with Shielded Metal Arch Welding (SMAW) process, in terms of their effects on the structural and mechanical properties and performances of DSS weldments. Analysis of the microstructure and phases were carried out. Also, the tensile, microhardness, impact and fracture properties were determined with relevant techniques. The results indicated that SMAW and FCAW welding processes differentially influence the structural and mechanical properties of the DSS weldments, consisting of the part of base material, weld and the heat affected zone (HAZ). The weld prepared using the SMAW process exhibited superior hardness characteristics at 309 HV and achieved the highest impact energy absorption of 145.92 <em>J</em>. In contrast, the FCAW prepared weldment exhibited the highest tensile strength, reaching 282.30 kN maximum load.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100295"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Duplex stainless steel (DSS) possesses wide range of useful metallographic and mechanical properties; hence the material has been used in different forms of application namely in chloride present environments such as desalination plants and cooling water services such as conventional and nuclear power stations. However, this material has its limitations as it's susceptible to cracking particularly stress corrosion cracking or pitting corrosion and can exhibit poor metallurgical properties such as microstructures and phase containing unbalanced proportions of ferrite and austenite. In this study, Flux Core Arc Welding (FCAW) is compared with Shielded Metal Arch Welding (SMAW) process, in terms of their effects on the structural and mechanical properties and performances of DSS weldments. Analysis of the microstructure and phases were carried out. Also, the tensile, microhardness, impact and fracture properties were determined with relevant techniques. The results indicated that SMAW and FCAW welding processes differentially influence the structural and mechanical properties of the DSS weldments, consisting of the part of base material, weld and the heat affected zone (HAZ). The weld prepared using the SMAW process exhibited superior hardness characteristics at 309 HV and achieved the highest impact energy absorption of 145.92 J. In contrast, the FCAW prepared weldment exhibited the highest tensile strength, reaching 282.30 kN maximum load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Feasibility study of advanced manufacturing processes: Integrating LPBF and LMD for Inconel 718 Comparative analysis of structural and mechanical properties of duplex stainless steel (DSS) weldments prepared by flux core arc welding and shielded metal arch welding processes Correlating geometry, microstructure and properties of High Strength Steel thin wall structures fabricated with WAAM Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1