A mixed discontinuous Galerkin method for the Biot equations

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Applied Numerical Mathematics Pub Date : 2025-02-19 DOI:10.1016/j.apnum.2025.02.011
Jing Wen
{"title":"A mixed discontinuous Galerkin method for the Biot equations","authors":"Jing Wen","doi":"10.1016/j.apnum.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>The Biot model is a coupling problem between the elastic media material with small deformation and porous media fluid flow, its mixed formulation uses the pore pressure, fluid flux, displacement as well as total stress tensor as the primary unknown variables. In this article, combining the discontinuous Galerkin method and the backward Euler method, we propose a mixed discontinuous Galerkin (MDG) method for the mixed Biot equations, it is based on coupling two MDG methods for each subproblem: the MDG method for the porous media fluid flow subproblem and the Hellinger-Reissner formulation of linear elastic subproblem. Then, we prove the well-posedness and the optimal priori error estimates for the MDG method under suitable norms. In particular, the optimal convergence rate of the pressure, displacement and stress tensor in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> norm and the fluid flux in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> norm are proved when the storage coefficient <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is strictly positive. Similarly, we deduce the optimal convergence rate of all variables in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> norm when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is nonnegative. Finally, some numerical experiments are given to examine the convergence analysis.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"212 ","pages":"Pages 283-299"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000352","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Biot model is a coupling problem between the elastic media material with small deformation and porous media fluid flow, its mixed formulation uses the pore pressure, fluid flux, displacement as well as total stress tensor as the primary unknown variables. In this article, combining the discontinuous Galerkin method and the backward Euler method, we propose a mixed discontinuous Galerkin (MDG) method for the mixed Biot equations, it is based on coupling two MDG methods for each subproblem: the MDG method for the porous media fluid flow subproblem and the Hellinger-Reissner formulation of linear elastic subproblem. Then, we prove the well-posedness and the optimal priori error estimates for the MDG method under suitable norms. In particular, the optimal convergence rate of the pressure, displacement and stress tensor in discrete L(L2) norm and the fluid flux in discrete L2(L2) norm are proved when the storage coefficient c0 is strictly positive. Similarly, we deduce the optimal convergence rate of all variables in discrete L2(L2) norm when c0 is nonnegative. Finally, some numerical experiments are given to examine the convergence analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
期刊最新文献
A mixed discontinuous Galerkin method for the Biot equations A decoupled nonconforming finite element method for biharmonic equation in three dimensions Functional equation arising in behavioral sciences: solvability and collocation scheme in Hölder spaces Estimating the growth of solutions of linear delayed difference and differential equations by alternating maximization An inverse problem of Robin coefficient identification in parabolic equations with interior degeneracy from terminal observation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1