Dmitry A. Petrov , Mikhail Yu. Gutkin , Anna L. Kolesnikova , Alexey E. Romanov
{"title":"Edge dislocation in an elastic sphere","authors":"Dmitry A. Petrov , Mikhail Yu. Gutkin , Anna L. Kolesnikova , Alexey E. Romanov","doi":"10.1016/j.ijengsci.2025.104226","DOIUrl":null,"url":null,"abstract":"<div><div>For the first time, an analytical solution is derived for the boundary-value problem in the theory of elasticity for a straight edge dislocation axially piercing an elastic sphere. The solution is given by the sum of the well-known stress fields of the dislocation placed in an infinite elastic medium and the image stress fields caused by the presence of the sphere free surface. To get the second term, a classical method of solving the boundary-value problems in elastic sphere is used. It is based on the Trefftz representation of the displacement vector and implies finding vector and scalar harmonic functions. Here these functions are found and expressed analytically in terms of infinite series with Legendre and associated Legendre polynomials. The results are visualized with stress-field maps in different cross sections of the sphere. It is shown that the free surface significantly changes the stress fields with respect to the infinite case and introduces the following new features: the anti-plane shear stress components, the change of the stress sign near the surface, new singularities at the points where the dislocation crosses the surface. The dislocation strain energy in the system is also provided and discussed in detail.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"210 ","pages":"Article 104226"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525000138","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For the first time, an analytical solution is derived for the boundary-value problem in the theory of elasticity for a straight edge dislocation axially piercing an elastic sphere. The solution is given by the sum of the well-known stress fields of the dislocation placed in an infinite elastic medium and the image stress fields caused by the presence of the sphere free surface. To get the second term, a classical method of solving the boundary-value problems in elastic sphere is used. It is based on the Trefftz representation of the displacement vector and implies finding vector and scalar harmonic functions. Here these functions are found and expressed analytically in terms of infinite series with Legendre and associated Legendre polynomials. The results are visualized with stress-field maps in different cross sections of the sphere. It is shown that the free surface significantly changes the stress fields with respect to the infinite case and introduces the following new features: the anti-plane shear stress components, the change of the stress sign near the surface, new singularities at the points where the dislocation crosses the surface. The dislocation strain energy in the system is also provided and discussed in detail.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.