Deep learning-based identification and localization of intracranial hemorrhage in patients using a large annotated head computed tomography dataset: A retrospective multicenter study

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2025-02-01 DOI:10.1016/j.imed.2024.11.002
Jingjing Liu , Weijie Fan , Yi Yang , Qi Peng , Bingjun Ji , Luxing He , Yang Li , Jing Yuan , Wei Li , Xianqi Wang , Yi Wu , Chen Liu , Qingfang Gong , Mi He , Yeqin Fu , Dong Zhang , Si Zhang , Yongjian Nian
{"title":"Deep learning-based identification and localization of intracranial hemorrhage in patients using a large annotated head computed tomography dataset: A retrospective multicenter study","authors":"Jingjing Liu ,&nbsp;Weijie Fan ,&nbsp;Yi Yang ,&nbsp;Qi Peng ,&nbsp;Bingjun Ji ,&nbsp;Luxing He ,&nbsp;Yang Li ,&nbsp;Jing Yuan ,&nbsp;Wei Li ,&nbsp;Xianqi Wang ,&nbsp;Yi Wu ,&nbsp;Chen Liu ,&nbsp;Qingfang Gong ,&nbsp;Mi He ,&nbsp;Yeqin Fu ,&nbsp;Dong Zhang ,&nbsp;Si Zhang ,&nbsp;Yongjian Nian","doi":"10.1016/j.imed.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurately identifying and localizing the five subtypes of intracranial hemorrhage (ICH) are crucial steps for subsequent clinical treatment; however, the lack of a large computed tomography (CT) dataset with annotations of the categorization and localization of ICH considerably limits the development of deep learning-based identification and localization methods. We aimed to construct this large dataset and develop a deep learning-based model to identify and localize the five ICH subtypes, including intraventricular hemorrhage (IVH), intraparenchymal hemorrhage (IPH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), and epidural hemorrhage (EDH), in non-contrast head CT scans.</div></div><div><h3>Methods</h3><div>Based on the public Radiological Society of North America (RSNA) 2019 dataset, we constructed a large CT dataset named RSNA 2019+ that was annotated for bleeding localization of the five ICH subtypes by three radiologists. An improved YOLOv8 architecture with the bidirectional feature pyramid network was proposed and trained using the RSNA 2019+ training dataset and evaluated on the RSNA 2019+ test dataset. The public CQ500, and two private datasets collected from the Xinqiao and Sunshine Union Hospitals, respectively, were also annotated to perform multicenter validation. Furthermore, the performance of the deep learning model was compared with that of four radiologists. Multiple performance metrics, including the average precision (AP), precision, recall and F1-score, were used for performance evaluation. The McNemar and chi-squared tests were performed, and the 95% Wilson confidence intervals were given for the precision and recall.</div></div><div><h3>Results</h3><div>There were 175,125; 4,707; 8,259; and 3,104 bounding boxes after annotation on the RSNA 2019+; CQ500+; and the PD 1 and PD 2 datasets, respectively. With an intersection-over-union threshold of 0.5, the APs of IVH, IPH, SAH, SDH and EDH are 0.852, 0.820, 0.574, 0.639, and 0.558, respectively, yielding a mean average precision (mAP) of 0.688 for our proposed deep learning model on the RSNA 2019+ test dataset. For the multicenter validation involving the three external datasets, the mAPs for CQ500, PD1, and PD2 were 0.594, 0.734, and 0.66, respectively, which is comparable to those of radiologist with eight years of experience in head CT interpretation.</div></div><div><h3>Conclusion</h3><div>The deep learning model developed from the constructed RSNA 2019+ dataset exhibited good potential in identifying and localizing the five ICH subtypes in CT slices and has the potential to assist in the clinical diagnosis.</div></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"5 1","pages":"Pages 14-22"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102624000895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Accurately identifying and localizing the five subtypes of intracranial hemorrhage (ICH) are crucial steps for subsequent clinical treatment; however, the lack of a large computed tomography (CT) dataset with annotations of the categorization and localization of ICH considerably limits the development of deep learning-based identification and localization methods. We aimed to construct this large dataset and develop a deep learning-based model to identify and localize the five ICH subtypes, including intraventricular hemorrhage (IVH), intraparenchymal hemorrhage (IPH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), and epidural hemorrhage (EDH), in non-contrast head CT scans.

Methods

Based on the public Radiological Society of North America (RSNA) 2019 dataset, we constructed a large CT dataset named RSNA 2019+ that was annotated for bleeding localization of the five ICH subtypes by three radiologists. An improved YOLOv8 architecture with the bidirectional feature pyramid network was proposed and trained using the RSNA 2019+ training dataset and evaluated on the RSNA 2019+ test dataset. The public CQ500, and two private datasets collected from the Xinqiao and Sunshine Union Hospitals, respectively, were also annotated to perform multicenter validation. Furthermore, the performance of the deep learning model was compared with that of four radiologists. Multiple performance metrics, including the average precision (AP), precision, recall and F1-score, were used for performance evaluation. The McNemar and chi-squared tests were performed, and the 95% Wilson confidence intervals were given for the precision and recall.

Results

There were 175,125; 4,707; 8,259; and 3,104 bounding boxes after annotation on the RSNA 2019+; CQ500+; and the PD 1 and PD 2 datasets, respectively. With an intersection-over-union threshold of 0.5, the APs of IVH, IPH, SAH, SDH and EDH are 0.852, 0.820, 0.574, 0.639, and 0.558, respectively, yielding a mean average precision (mAP) of 0.688 for our proposed deep learning model on the RSNA 2019+ test dataset. For the multicenter validation involving the three external datasets, the mAPs for CQ500, PD1, and PD2 were 0.594, 0.734, and 0.66, respectively, which is comparable to those of radiologist with eight years of experience in head CT interpretation.

Conclusion

The deep learning model developed from the constructed RSNA 2019+ dataset exhibited good potential in identifying and localizing the five ICH subtypes in CT slices and has the potential to assist in the clinical diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Large language models-powered clinical decision support: enhancing or replacing human expertise? Computational interrogation of natural compounds identified resveratrol-3-O-D-glucopyranoside as a potential inhibitor of essential monkeypox virus proteins Deep learning-based identification and localization of intracranial hemorrhage in patients using a large annotated head computed tomography dataset: A retrospective multicenter study Current trends and future orientation in diagnosing lung pathologies: A systematic survey Nationwide survey of the status of artificial intelligence-based intracranial aneurysm detection systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1