VRK2 promotes colorectal cancer growth and impedes immunotherapy and 5-FU treatment efficacy

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular basis of disease Pub Date : 2025-02-18 DOI:10.1016/j.bbadis.2025.167729
Yu-Tong Wu , Meng Gao , Kun-Yang Cheng , Le Li , Bai-Qi Wang , Ya-Nan He , Yue Zhang , Xue-Yi Liu , Run-Lei Du , Guo-Qing Li , Yue-Xiu Liang , Jian-Feng Zhang , Xiao-Dong Zhang , Yi Liu
{"title":"VRK2 promotes colorectal cancer growth and impedes immunotherapy and 5-FU treatment efficacy","authors":"Yu-Tong Wu ,&nbsp;Meng Gao ,&nbsp;Kun-Yang Cheng ,&nbsp;Le Li ,&nbsp;Bai-Qi Wang ,&nbsp;Ya-Nan He ,&nbsp;Yue Zhang ,&nbsp;Xue-Yi Liu ,&nbsp;Run-Lei Du ,&nbsp;Guo-Qing Li ,&nbsp;Yue-Xiu Liang ,&nbsp;Jian-Feng Zhang ,&nbsp;Xiao-Dong Zhang ,&nbsp;Yi Liu","doi":"10.1016/j.bbadis.2025.167729","DOIUrl":null,"url":null,"abstract":"<div><div>Vaccinia-Related Kinase 2 (VRK2), a member of the vaccinia virus-related protein kinase family, is crucial in regulating apoptosis and tumor cell growth signaling pathways. Despite its established roles in various cancers, investigations into its functions in colorectal cancer have been relatively limited. Utilizing The Cancer Genome Atlas and Genotype-Tissue Expression databases, this study assesses VRK2 expression across 33 cancer types, highlighting significant upregulation and diagnostic relevance, particularly in colorectal cancer, where it marks poor prognosis. VRK2's influence extends across multiple cancer-related signaling pathways, with focused experiments confirming its vital role in the E2F signaling pathway through transcriptomic sequencing and dual-luciferase reporter assays. Deletion of VRK2 markedly inhibits proliferation, cell cycle progression, migration, and tumorigenesis in colorectal cancer cells, whereas overexpression enhances these oncogenic traits. Additionally, VRK2 expression correlates with genomic instability and the tumor microenvironment, influencing antitumor immunity and response to immunotherapy. Importantly, our analysis reveals that VRK2 modulates the chemosensitivity of tumor cells, specifically enhancing resistance to the chemotherapeutic agent 5-FU. These findings underscore VRK2's multifaceted role in promoting colorectal cancer development and suggest its potential as a therapeutic target.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 4","pages":"Article 167729"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000742","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccinia-Related Kinase 2 (VRK2), a member of the vaccinia virus-related protein kinase family, is crucial in regulating apoptosis and tumor cell growth signaling pathways. Despite its established roles in various cancers, investigations into its functions in colorectal cancer have been relatively limited. Utilizing The Cancer Genome Atlas and Genotype-Tissue Expression databases, this study assesses VRK2 expression across 33 cancer types, highlighting significant upregulation and diagnostic relevance, particularly in colorectal cancer, where it marks poor prognosis. VRK2's influence extends across multiple cancer-related signaling pathways, with focused experiments confirming its vital role in the E2F signaling pathway through transcriptomic sequencing and dual-luciferase reporter assays. Deletion of VRK2 markedly inhibits proliferation, cell cycle progression, migration, and tumorigenesis in colorectal cancer cells, whereas overexpression enhances these oncogenic traits. Additionally, VRK2 expression correlates with genomic instability and the tumor microenvironment, influencing antitumor immunity and response to immunotherapy. Importantly, our analysis reveals that VRK2 modulates the chemosensitivity of tumor cells, specifically enhancing resistance to the chemotherapeutic agent 5-FU. These findings underscore VRK2's multifaceted role in promoting colorectal cancer development and suggest its potential as a therapeutic target.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
期刊最新文献
Exploring the protective mechanisms of syringaresinol against myocardial infarction by experimental validation and network pharmacology A possible genetic predisposition to suspected hypoxic-ischaemic encephalopathy Hypoxia-induced PRPF19 modulates TPT1 alternative splicing to facilitate cisplatin resistance in high-grade serous ovarian cancer Platelets promote metastasis of intrahepatic cholangiocarcinoma through activation of TGF-β/Smad2 pathway VRK2 promotes colorectal cancer growth and impedes immunotherapy and 5-FU treatment efficacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1