A 3D porous electrode for real-time monitoring of microalgal growth and exopolysaccharides yields using Electrochemical Impedance Spectroscopy

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2025-02-13 DOI:10.1016/j.bios.2025.117260
Francisco C. Cotta , Raquel Amaral , Felipe L. Bacellar , Diogo Correia , Kamal Asadi , Paulo R.F. Rocha
{"title":"A 3D porous electrode for real-time monitoring of microalgal growth and exopolysaccharides yields using Electrochemical Impedance Spectroscopy","authors":"Francisco C. Cotta ,&nbsp;Raquel Amaral ,&nbsp;Felipe L. Bacellar ,&nbsp;Diogo Correia ,&nbsp;Kamal Asadi ,&nbsp;Paulo R.F. Rocha","doi":"10.1016/j.bios.2025.117260","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient monitoring of microalgal growth is vital for biomass industrialization and management of water resources. The precise determination of growth phases of biotechnologically relevant species of microalgae is necessary as it allows controlling the onset of target metabolites production such as exopolysaccharides (EPS). However, a low-cost, real-time and ultrasensitive measurement method for direct determination of real-time microalgal growth and EPS production does not exist. Here, we show that Electrochemical Impedance Spectroscopy (EIS) in combination with porous polyurethane(PU)/poly (3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes can be used as a real-time probe to monitor microalgal growth and EPS production. We employ <em>Lobochlamys segnis</em> as a microalgae model system and show that growth can be continuously monitored with EIS for 14 days. A logistic growth rate from impedance data of <em>k</em><sub><em>Z</em></sub> = 0.75/day is found similar to that of conventional cell counting, of <em>k</em><sub><em>cells</em></sub> = 0.85/day, and is extracted from initial cell seeding densities as low as 10<sup>5</sup> cells/mL. Furthermore, the Ohmic resistance of electrolyte solution enables the detection of the time-point of maximum EPS production. The combination of ultra-large porous electrodes with EIS provides a platform for sensing and modelling of microalgae growth in real-time and opens new avenues for predictive water resource management as well as more effective large-scale microalgal production in biotechnological applications.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"277 ","pages":"Article 117260"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325001344","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient monitoring of microalgal growth is vital for biomass industrialization and management of water resources. The precise determination of growth phases of biotechnologically relevant species of microalgae is necessary as it allows controlling the onset of target metabolites production such as exopolysaccharides (EPS). However, a low-cost, real-time and ultrasensitive measurement method for direct determination of real-time microalgal growth and EPS production does not exist. Here, we show that Electrochemical Impedance Spectroscopy (EIS) in combination with porous polyurethane(PU)/poly (3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes can be used as a real-time probe to monitor microalgal growth and EPS production. We employ Lobochlamys segnis as a microalgae model system and show that growth can be continuously monitored with EIS for 14 days. A logistic growth rate from impedance data of kZ = 0.75/day is found similar to that of conventional cell counting, of kcells = 0.85/day, and is extracted from initial cell seeding densities as low as 105 cells/mL. Furthermore, the Ohmic resistance of electrolyte solution enables the detection of the time-point of maximum EPS production. The combination of ultra-large porous electrodes with EIS provides a platform for sensing and modelling of microalgae growth in real-time and opens new avenues for predictive water resource management as well as more effective large-scale microalgal production in biotechnological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Editorial Board Continuous glucose monitoring (CGM) system based on protein hydrogel anti-biofouling coating for long-term accurate and point-of-care glucose monitoring Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat A nanoplasmonic cell-on-a-chip for in situ monitoring of PD-L1+ exosome-mediated immune modulation Real-time cardiomyocyte contraction sensing via a neo-flexible magnetic sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1