Abdulla Alsaad, Iftikhar Ahmad, Adel Aawan, Ahmed M. Abdelrhman, Wajid Khan
{"title":"Design, development and testing of a wearable hybrid energy harvester for sustainable gadgets","authors":"Abdulla Alsaad, Iftikhar Ahmad, Adel Aawan, Ahmed M. Abdelrhman, Wajid Khan","doi":"10.1016/j.asems.2025.100137","DOIUrl":null,"url":null,"abstract":"<div><div>This research paper presents the design, development and testing of a novel wearable hybrid energy harvester (WH-EH) aimed at powering sustainable gadgets. By harnessing energy using both electromagnetic and piezoelectric transduction mechanisms to capture ambient mechanical energy from human body motion, this device offers a versatile solution to the growing demand for portable and renewable energy. The paper details the integration of both mechanisms into a single device that fits in human shoes and the practical implications of deploying such technology in everyday gadgets. The WH-EH comprised of 3D printed frame, a cantilever beam made up of stainless steel, two permanent neodymium magnets residing at the tip of the cantilever beam, two printed circuit board-based micro planar coils that were fixed to the top and bottom of the 3D printed frame. Through rigorous testing, the WH-EH has demonstrated significant potential of producing maximum a power of 577 μW which can help in reducing the reliance on traditional power sources and advancing the frontier of wearable technology. Energy harvesters like WH-EH are pivotal in advancing the sustainability of wearable gadgets, diminishing the dependence on traditional battery sources. These innovations not only strengthen the longevity and eco-friendliness of personal electronics but also align with global sustainable development goals, particularly in the energy and environmental sectors. The progression of such energy harvesters marks a crucial milestone in the ongoing integration of renewable energy practices into daily electrical applications.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X25000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper presents the design, development and testing of a novel wearable hybrid energy harvester (WH-EH) aimed at powering sustainable gadgets. By harnessing energy using both electromagnetic and piezoelectric transduction mechanisms to capture ambient mechanical energy from human body motion, this device offers a versatile solution to the growing demand for portable and renewable energy. The paper details the integration of both mechanisms into a single device that fits in human shoes and the practical implications of deploying such technology in everyday gadgets. The WH-EH comprised of 3D printed frame, a cantilever beam made up of stainless steel, two permanent neodymium magnets residing at the tip of the cantilever beam, two printed circuit board-based micro planar coils that were fixed to the top and bottom of the 3D printed frame. Through rigorous testing, the WH-EH has demonstrated significant potential of producing maximum a power of 577 μW which can help in reducing the reliance on traditional power sources and advancing the frontier of wearable technology. Energy harvesters like WH-EH are pivotal in advancing the sustainability of wearable gadgets, diminishing the dependence on traditional battery sources. These innovations not only strengthen the longevity and eco-friendliness of personal electronics but also align with global sustainable development goals, particularly in the energy and environmental sectors. The progression of such energy harvesters marks a crucial milestone in the ongoing integration of renewable energy practices into daily electrical applications.