Comparing physician and large language model responses to influenza patient questions in the online health community

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-02-18 DOI:10.1016/j.ijmedinf.2025.105836
Hong Wu, Mingyu Li, Li Zhang
{"title":"Comparing physician and large language model responses to influenza patient questions in the online health community","authors":"Hong Wu,&nbsp;Mingyu Li,&nbsp;Li Zhang","doi":"10.1016/j.ijmedinf.2025.105836","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>During influenza season, some patients tend to seek medical advice through online platforms. However, due to time constraints, the informational and emotional support provided by physicians is limited. Large language models (LLMs) can rapidly provide medical knowledge and empathy, but their capacity for providing informational support to patients with influenza and assisting physicians in providing emotional support is unclear. Therefore, this study evaluated the quality of LLM-generated influenza advice and its emotional support performance in comparison with physician advice.</div></div><div><h3>Methods</h3><div>This study utilized 200 influenza question–answer pairs from the online health community. Data collection consisted of two parts: (1) A panel of board-certified physicians evaluated the quality of LLM advice vs physician advice. (2) Physician advice was polished using an LLM, and the LLM-rewritten advice was compared to the original physician advice using the LLM module.</div></div><div><h3>Results</h3><div>For informational support, there was no significant difference between LLM and physician advice in terms of the presence of incorrect information, omission of information, extent of harm or empathy. Nevertheless, compared to physician advice, LLM advice was more likely to cause harm and to be in line with medical consensus. LLM was also able to assist physicians in providing emotional support, since the LLM-rewritten advice was significantly more respectful, friendly and empathetic, when compared with physician advice. Also, the LLM-rewritten advice was logically smooth. In most cases, LLM did not add or omit the original medical information.</div></div><div><h3>Conclusion</h3><div>This study suggests that LLMs can provide informational and emotional support for influenza patients. This may help to alleviate the pressure on physicians and promote physician-patient communication.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"197 ","pages":"Article 105836"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138650562500053X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

During influenza season, some patients tend to seek medical advice through online platforms. However, due to time constraints, the informational and emotional support provided by physicians is limited. Large language models (LLMs) can rapidly provide medical knowledge and empathy, but their capacity for providing informational support to patients with influenza and assisting physicians in providing emotional support is unclear. Therefore, this study evaluated the quality of LLM-generated influenza advice and its emotional support performance in comparison with physician advice.

Methods

This study utilized 200 influenza question–answer pairs from the online health community. Data collection consisted of two parts: (1) A panel of board-certified physicians evaluated the quality of LLM advice vs physician advice. (2) Physician advice was polished using an LLM, and the LLM-rewritten advice was compared to the original physician advice using the LLM module.

Results

For informational support, there was no significant difference between LLM and physician advice in terms of the presence of incorrect information, omission of information, extent of harm or empathy. Nevertheless, compared to physician advice, LLM advice was more likely to cause harm and to be in line with medical consensus. LLM was also able to assist physicians in providing emotional support, since the LLM-rewritten advice was significantly more respectful, friendly and empathetic, when compared with physician advice. Also, the LLM-rewritten advice was logically smooth. In most cases, LLM did not add or omit the original medical information.

Conclusion

This study suggests that LLMs can provide informational and emotional support for influenza patients. This may help to alleviate the pressure on physicians and promote physician-patient communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Editorial Board Explainability and uncertainty: Two sides of the same coin for enhancing the interpretability of deep learning models in healthcare Electrocardiographic-Driven artificial intelligence Model: A new approach to predicting One-Year mortality in heart failure with reduced ejection fraction patients Enhancing security in patient medical information exchange: A qualitative study Comparing physician and large language model responses to influenza patient questions in the online health community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1