Advanced characterization of thermal degradation mechanisms in carbon fibre-reinforced polymer composites under continuous wave laser irradiation

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2025-02-19 DOI:10.1016/j.compositesa.2025.108817
Max Mammone , Jojibabu Panta , Richard P. Mildren , John Wang , Juan Escobedo-Diaz , Lance Mcgarva , Mathew Ibrahim , Adam Sharp , Richard Yang , Y.X. Zhang
{"title":"Advanced characterization of thermal degradation mechanisms in carbon fibre-reinforced polymer composites under continuous wave laser irradiation","authors":"Max Mammone ,&nbsp;Jojibabu Panta ,&nbsp;Richard P. Mildren ,&nbsp;John Wang ,&nbsp;Juan Escobedo-Diaz ,&nbsp;Lance Mcgarva ,&nbsp;Mathew Ibrahim ,&nbsp;Adam Sharp ,&nbsp;Richard Yang ,&nbsp;Y.X. Zhang","doi":"10.1016/j.compositesa.2025.108817","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a detailed and comprehensive analysis of the effects of laser power and beam diameter on the thermal damage characteristics of carbon fibre-reinforced polymer (CFRP) composites, aiming to uncover the underlying damage mechanisms using advanced characterization techniques. Continuous wave laser irradiation was performed with beam diameters of 3.18 mm and 5.70 mm at varying power levels up to 365 W to evaluate the influence of laser parameters on CFRP damage. High-resolution thermal imaging captured temperature distributions on the CFRP surfaces, revealing complex interactions between laser parameters and resulting thermal damage. Quantitative ultrasonic C-scan imaging offered detailed insights into the extent and distribution of damage, elucidating the interplay between laser parameters and CFRP integrity. Results show that for the 3.18 mm beam diameter, perforation times significantly decreased from 46 s at 215 W to 7 s at 365 W. Simultaneously, the damaged area reduced from 1204 mm<sup>2</sup> (48.2 %) at 215 W to 372 mm<sup>2</sup> (14.9 %) at 365 W, indicating efficient material ablation. Conversely, for the 5.7 mm beam diameter, perforation times were considerably longer, ranging from 393 s at 215 W to 269 s at 365 W, while the damage area increased from 1299 mm<sup>2</sup> (52.0 %) to 1712 mm<sup>2</sup> (68.5 %), reflecting a broader heat-affected zone (HAZ) and more extensive thermal damage. Mass loss trends also varied, decreasing with higher power for the smaller beam diameter but increasing for the larger beam, highlighting contrasting ablation efficiencies and thermal effects. Micro-CT imaging revealed internal structural changes in the CFRP, confirming SEM observations that detailed surface morphology alterations under varying laser conditions. Infrared micro-spectroscopy beamline (IRM) analysis further uncovered chemical modifications and compositional changes induced by laser exposure, providing insights into degradation mechanisms and residual stresses within the composite matrix. These findings significantly enhance the understanding of thermal damage mechanisms in CFRP, offering valuable implications for aerospace and high-performance composite applications.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108817"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001113","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a detailed and comprehensive analysis of the effects of laser power and beam diameter on the thermal damage characteristics of carbon fibre-reinforced polymer (CFRP) composites, aiming to uncover the underlying damage mechanisms using advanced characterization techniques. Continuous wave laser irradiation was performed with beam diameters of 3.18 mm and 5.70 mm at varying power levels up to 365 W to evaluate the influence of laser parameters on CFRP damage. High-resolution thermal imaging captured temperature distributions on the CFRP surfaces, revealing complex interactions between laser parameters and resulting thermal damage. Quantitative ultrasonic C-scan imaging offered detailed insights into the extent and distribution of damage, elucidating the interplay between laser parameters and CFRP integrity. Results show that for the 3.18 mm beam diameter, perforation times significantly decreased from 46 s at 215 W to 7 s at 365 W. Simultaneously, the damaged area reduced from 1204 mm2 (48.2 %) at 215 W to 372 mm2 (14.9 %) at 365 W, indicating efficient material ablation. Conversely, for the 5.7 mm beam diameter, perforation times were considerably longer, ranging from 393 s at 215 W to 269 s at 365 W, while the damage area increased from 1299 mm2 (52.0 %) to 1712 mm2 (68.5 %), reflecting a broader heat-affected zone (HAZ) and more extensive thermal damage. Mass loss trends also varied, decreasing with higher power for the smaller beam diameter but increasing for the larger beam, highlighting contrasting ablation efficiencies and thermal effects. Micro-CT imaging revealed internal structural changes in the CFRP, confirming SEM observations that detailed surface morphology alterations under varying laser conditions. Infrared micro-spectroscopy beamline (IRM) analysis further uncovered chemical modifications and compositional changes induced by laser exposure, providing insights into degradation mechanisms and residual stresses within the composite matrix. These findings significantly enhance the understanding of thermal damage mechanisms in CFRP, offering valuable implications for aerospace and high-performance composite applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续波激光辐照下碳纤维增强聚合物复合材料热降解机理的深入表征
本研究详细而全面地分析了激光功率和光束直径对碳纤维增强聚合物(CFRP)复合材料热损伤特性的影响,旨在利用先进的表征技术揭示潜在的损伤机制。连续波激光辐照的光束直径分别为 3.18 毫米和 5.70 毫米,功率水平各不相同,最高可达 365 瓦,以评估激光参数对 CFRP 损伤的影响。高分辨率热成像技术捕捉到了 CFRP 表面的温度分布,揭示了激光参数与热损伤之间复杂的相互作用。定量超声波 C 扫描成像提供了对损坏程度和分布的详细了解,阐明了激光参数与 CFRP 完整性之间的相互作用。结果表明,对于 3.18 毫米的光束直径,穿孔时间从 215 瓦时的 46 秒大幅减少到 365 瓦时的 7 秒。同时,受损面积从 215 瓦时的 1204 平方毫米(48.2%)减少到 365 瓦时的 372 平方毫米(14.9%),表明材料烧蚀效率高。相反,对于直径为 5.7 毫米的光束,穿孔时间要长得多,从 215 瓦时的 393 秒到 365 瓦时的 269 秒,而损坏面积则从 1299 平方毫米(52.0%)增加到 1712 平方毫米(68.5%),这反映出热影响区(HAZ)更宽,热损坏范围更大。质量损失的趋势也各不相同,较小光束直径的质量损失随功率的增加而减少,而较大光束的质量损失则随功率的增加而增加,这凸显了截然不同的烧蚀效率和热效应。显微计算机断层扫描成像显示了 CFRP 的内部结构变化,证实了扫描电子显微镜的观察结果,即在不同激光条件下表面形态的详细变化。红外微光谱光束线(IRM)分析进一步揭示了激光照射引起的化学修饰和成分变化,为了解复合材料基体内的降解机制和残余应力提供了线索。这些发现大大加深了对 CFRP 热损伤机制的理解,为航空航天和高性能复合材料应用提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Editorial Board Evaluation of the informed isotropic (IISO) viscosity model for compression molding of discontinuous fiber reinforced polymers Reversible interfacial chemistry enables closed-loop recycling and highly thermal conductivity of EPDM/waste rubber composites Multifunctional carbon nanotube@expanded graphite/polydimethylsiloxane composites with exceptional electromagnetic interference shielding and thermal management capability Ballistic behavior of bi-axial pre-tensioned textile-laminate composite structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1