Le Liang , Yangyang Liang , Min Su , Zhe Wang , Zhendong Zhou , Xiaotao Zhou , Zhongguan Jiang
{"title":"Combined toxicity of microplastic fibers and dibutyl phthalate on algae: Synergistic or antagonistic?","authors":"Le Liang , Yangyang Liang , Min Su , Zhe Wang , Zhendong Zhou , Xiaotao Zhou , Zhongguan Jiang","doi":"10.1016/j.aquatox.2025.107290","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics, combined with plasticizers, have been widely utilized worldwide. Microplastic fibers (MPFs) and dibutyl phthalate (DBP) account for the most predominant microplastics and plasticizers detected in freshwater ecosystem, with their joint toxicity being limited studied. In this study, we employed freshwater algae (<em>Chlorella vulgaris</em>) as toxicity test model organism to assess their growth, photosynthesis, metabolism, and oxidative response when exposing to different concentrations of polypropylene MPFs and the co-exposure of DBP. In addition, the toxic interaction between MPFs and DBP was assessed by combining the integrated toxicity value (Integrated Biomarker Response version 2, IBRv2) and the mixture toxicity index (Effect Addition Index, EAI). Our results demonstrated significant toxic effects of MPFs and DBP on <em>C. vulgaris</em>, and highlighted their dynamic interactions with <em>C. vulgaris</em>. Specifically, when combining with DBP, MPFs with high concentrations exhibited significantly increase in algae growth inhibition, photosynthetic pigment contents (Chl-a, Chl-b, and carotenoids), protein contents, and oxidative enzymes (SOD, CAT, and MDA). In terms of integrated toxicity values, higher IBRv2 values were recorded by the combined exposure of MPFs and DBP in contrast with the sole exposure groups, indicating that the combined exposure caused more severe damage to photosynthesis, oxidation and metabolism. In addition, our study recorded synergistic combined toxicity when MPFs were in high concentrations, whereas antagonistic combined toxicity when MPFs were in low concentrations. Our study highlights the MPFs concentration-dependent combined toxicity (synergistic or antagonistic) when exposing to microplastics and plasticizers in freshwater ecosystems.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"281 ","pages":"Article 107290"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000554","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics, combined with plasticizers, have been widely utilized worldwide. Microplastic fibers (MPFs) and dibutyl phthalate (DBP) account for the most predominant microplastics and plasticizers detected in freshwater ecosystem, with their joint toxicity being limited studied. In this study, we employed freshwater algae (Chlorella vulgaris) as toxicity test model organism to assess their growth, photosynthesis, metabolism, and oxidative response when exposing to different concentrations of polypropylene MPFs and the co-exposure of DBP. In addition, the toxic interaction between MPFs and DBP was assessed by combining the integrated toxicity value (Integrated Biomarker Response version 2, IBRv2) and the mixture toxicity index (Effect Addition Index, EAI). Our results demonstrated significant toxic effects of MPFs and DBP on C. vulgaris, and highlighted their dynamic interactions with C. vulgaris. Specifically, when combining with DBP, MPFs with high concentrations exhibited significantly increase in algae growth inhibition, photosynthetic pigment contents (Chl-a, Chl-b, and carotenoids), protein contents, and oxidative enzymes (SOD, CAT, and MDA). In terms of integrated toxicity values, higher IBRv2 values were recorded by the combined exposure of MPFs and DBP in contrast with the sole exposure groups, indicating that the combined exposure caused more severe damage to photosynthesis, oxidation and metabolism. In addition, our study recorded synergistic combined toxicity when MPFs were in high concentrations, whereas antagonistic combined toxicity when MPFs were in low concentrations. Our study highlights the MPFs concentration-dependent combined toxicity (synergistic or antagonistic) when exposing to microplastics and plasticizers in freshwater ecosystems.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.