Irreversibility and flow characteristics of reactive Williamson fluid with variable thermal dependent properties under bimolecular kinetics and vertical channel convective cooling

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2025-02-15 DOI:10.1016/j.chphi.2025.100853
A.D. Ohaegbue , S.O. Salawu , R.A. Oderinu , P. Adegbite , A.O. Akindele , F.D. Ayegbusi , A.T. Ayorinde
{"title":"Irreversibility and flow characteristics of reactive Williamson fluid with variable thermal dependent properties under bimolecular kinetics and vertical channel convective cooling","authors":"A.D. Ohaegbue ,&nbsp;S.O. Salawu ,&nbsp;R.A. Oderinu ,&nbsp;P. Adegbite ,&nbsp;A.O. Akindele ,&nbsp;F.D. Ayegbusi ,&nbsp;A.T. Ayorinde","doi":"10.1016/j.chphi.2025.100853","DOIUrl":null,"url":null,"abstract":"<div><div>The major industrial and technological application of non-Newtonian fluid in everyday life has garnered the attention of scientists due to its high rate of energy transfer. Consequently, this study examines the effects of variable thermal dependent properties, wall gradient, Nusselt number, and entropy generation on reactive Williamson fluid under Bimolecular kinetics within convective boundary conditions. The nonlinear ordinary differential equations for energy and momentum are derived through appropriate similarity transformations. These dimensionless ODEs are then transformed into a system of first-order equations and numerically solved using the weighted residual technique couple with Galarkin approximation integration method. The key parameter's effects on the flow fields are analyzed and presented through figures and tables. The results show that the Grashof number, variable viscosity, pressure gradient, enhanced fluid motion, and the Brinkman number, activation energy with Frank-Kamenetskii parameter, influence thermal behavior through viscous heating, reaction rates, and temperature sensitivity.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100853"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The major industrial and technological application of non-Newtonian fluid in everyday life has garnered the attention of scientists due to its high rate of energy transfer. Consequently, this study examines the effects of variable thermal dependent properties, wall gradient, Nusselt number, and entropy generation on reactive Williamson fluid under Bimolecular kinetics within convective boundary conditions. The nonlinear ordinary differential equations for energy and momentum are derived through appropriate similarity transformations. These dimensionless ODEs are then transformed into a system of first-order equations and numerically solved using the weighted residual technique couple with Galarkin approximation integration method. The key parameter's effects on the flow fields are analyzed and presented through figures and tables. The results show that the Grashof number, variable viscosity, pressure gradient, enhanced fluid motion, and the Brinkman number, activation energy with Frank-Kamenetskii parameter, influence thermal behavior through viscous heating, reaction rates, and temperature sensitivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Structural, Spectroscopic, Thermal and Morphological Evaluation of Biogenic ZnO/Ag Nanocomposite using Moringa oleifera Seed Extract for Enhanced Antimicrobial Efficacy Theoretical analysis of non-fullerene acceptor based bulk heterojunction organic solar cell with copper based Hole Transport Layers Photocatalytic degradation of Acid blue 113 dye by montmorillonite/copper ferrite nanocomposite: Characterization, optimization, and toxicity assessment Multifunctional metal oxides synthesized via a solvo-hydrothermal process for photocatalytic degradation of organic dye and bacteria in wastewater Volumetric and acoustic properties of binary solutions of water and acetonitrile at 298.15K, 303.15K, 308.15K, 313.15K, 318.15K, and 323.15K
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1