Optimal Estimation of the Null Distribution in Large-Scale Inference

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2025-01-14 DOI:10.1109/TIT.2025.3529457
Subhodh Kotekal;Chao Gao
{"title":"Optimal Estimation of the Null Distribution in Large-Scale Inference","authors":"Subhodh Kotekal;Chao Gao","doi":"10.1109/TIT.2025.3529457","DOIUrl":null,"url":null,"abstract":"The advent of large-scale inference has spurred reexamination of conventional statistical thinking. In a series of highly original articles, Efron persuasively illustrated the danger for downstream inference in assuming the veracity of a posited null distribution. In a Gaussian model for n many z-scores with at most <inline-formula> <tex-math>$k \\lt \\frac {n}{2}$ </tex-math></inline-formula> nonnulls, Efron suggests estimating the parameters of an empirical null <inline-formula> <tex-math>$N(\\theta , \\sigma ^{2})$ </tex-math></inline-formula> instead of assuming the theoretical null <inline-formula> <tex-math>$N(0, 1)$ </tex-math></inline-formula>. Looking to the robust statistics literature by viewing the nonnulls as outliers is unsatisfactory as the question of optimal rates is still open; even consistency is not known in the regime <inline-formula> <tex-math>$k \\asymp n$ </tex-math></inline-formula> which is especially relevant to many large-scale inference applications. However, provably rate-optimal robust estimators have been developed in other models (e.g. Huber contamination) which appear quite close to Efron’s proposal. Notably, the impossibility of consistency when <inline-formula> <tex-math>$k \\asymp n$ </tex-math></inline-formula> in these other models may suggest the same major weakness afflicts Efron’s popularly adopted recommendation. A sound evaluation thus requires a complete understanding of information-theoretic limits. We characterize the regime of k for which consistent estimation is possible, notably without imposing any assumptions at all on the nonnull effects. Unlike in other robust models, it is shown consistent estimation of the location parameter is possible if and only if <inline-formula> <tex-math>$\\frac {n}{2} {-} k = \\omega (\\sqrt {n})$ </tex-math></inline-formula>, and of the scale parameter in the entire regime <inline-formula> <tex-math>$k \\lt \\frac {n}{2}$ </tex-math></inline-formula>. Furthermore, we establish sharp minimax rates and show estimators based on the empirical characteristic function are optimal by exploiting the Gaussian character of the data.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 3","pages":"2075-2103"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841456/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of large-scale inference has spurred reexamination of conventional statistical thinking. In a series of highly original articles, Efron persuasively illustrated the danger for downstream inference in assuming the veracity of a posited null distribution. In a Gaussian model for n many z-scores with at most $k \lt \frac {n}{2}$ nonnulls, Efron suggests estimating the parameters of an empirical null $N(\theta , \sigma ^{2})$ instead of assuming the theoretical null $N(0, 1)$ . Looking to the robust statistics literature by viewing the nonnulls as outliers is unsatisfactory as the question of optimal rates is still open; even consistency is not known in the regime $k \asymp n$ which is especially relevant to many large-scale inference applications. However, provably rate-optimal robust estimators have been developed in other models (e.g. Huber contamination) which appear quite close to Efron’s proposal. Notably, the impossibility of consistency when $k \asymp n$ in these other models may suggest the same major weakness afflicts Efron’s popularly adopted recommendation. A sound evaluation thus requires a complete understanding of information-theoretic limits. We characterize the regime of k for which consistent estimation is possible, notably without imposing any assumptions at all on the nonnull effects. Unlike in other robust models, it is shown consistent estimation of the location parameter is possible if and only if $\frac {n}{2} {-} k = \omega (\sqrt {n})$ , and of the scale parameter in the entire regime $k \lt \frac {n}{2}$ . Furthermore, we establish sharp minimax rates and show estimators based on the empirical characteristic function are optimal by exploiting the Gaussian character of the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模推理中零分布的最优估计
大规模推理的出现促使人们重新审视传统的统计思维。在一系列高度原创的文章中,Efron有说服力地说明了假设假设的零分布的准确性对下游推理的危险。在n个z分数最多为$k \lt \frac {n}{2}$非零的高斯模型中,Efron建议估计经验零的参数$N(\theta , \sigma ^{2})$而不是假设理论零$N(0, 1)$。通过将非零值视为异常值来寻找强大的统计文献是不令人满意的,因为最佳比率的问题仍然是开放的;甚至在$k \asymp n$中也不知道一致性,这与许多大规模推理应用特别相关。然而,在其他模型(例如Huber污染)中已经开发了可证明的速率最优稳健估计器,这些模型似乎与Efron的建议非常接近。值得注意的是,当$k \asymp n$在这些其他模型中出现时,一致性的不可能性可能表明,Efron普遍采用的建议也存在同样的主要弱点。因此,一个健全的评估需要完全理解信息论的局限性。我们描述了k的范围,其中一致估计是可能的,特别是没有对非零效应施加任何假设。与其他鲁棒模型不同的是,当且仅当$\frac {n}{2} {-} k = \omega (\sqrt {n})$和整个区域的尺度参数$k \lt \frac {n}{2}$时,位置参数的一致估计是可能的。此外,我们利用数据的高斯特性,建立了尖锐极小极大率,并证明了基于经验特征函数的估计是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
IEEE Transactions on Information Theory Information for Authors On Minimax Empirical Bayes Predictive Densities TechRxiv: Share Your Preprint Research with the World! IEEE Transactions on Information Theory Information for Authors Adaptive Monotonicity Testing in Sublinear Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1