{"title":"Frequentist Model Averaging for Global Fréchet Regression","authors":"Xingyu Yan;Xinyu Zhang;Peng Zhao","doi":"10.1109/TIT.2024.3520979","DOIUrl":null,"url":null,"abstract":"To consider model uncertainty in global Fréchet regression and improve density response prediction, we propose a frequentist model averaging method. The weights are chosen by minimizing a cross-validation criterion based on Wasserstein distance. In the cases where all candidate models are misspecified, we prove that the corresponding model averaging estimator has asymptotic optimality, achieving the lowest possible Wasserstein distance. When there are correctly specified candidate models, we prove that our method asymptotically assigns all weights to the correctly specified models. Numerical results of extensive simulations and a real data analysis on intracerebral hemorrhage data strongly favour our method.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 3","pages":"1994-2006"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818536/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To consider model uncertainty in global Fréchet regression and improve density response prediction, we propose a frequentist model averaging method. The weights are chosen by minimizing a cross-validation criterion based on Wasserstein distance. In the cases where all candidate models are misspecified, we prove that the corresponding model averaging estimator has asymptotic optimality, achieving the lowest possible Wasserstein distance. When there are correctly specified candidate models, we prove that our method asymptotically assigns all weights to the correctly specified models. Numerical results of extensive simulations and a real data analysis on intracerebral hemorrhage data strongly favour our method.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.