Frequentist Model Averaging for Global Fréchet Regression

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-12-30 DOI:10.1109/TIT.2024.3520979
Xingyu Yan;Xinyu Zhang;Peng Zhao
{"title":"Frequentist Model Averaging for Global Fréchet Regression","authors":"Xingyu Yan;Xinyu Zhang;Peng Zhao","doi":"10.1109/TIT.2024.3520979","DOIUrl":null,"url":null,"abstract":"To consider model uncertainty in global Fréchet regression and improve density response prediction, we propose a frequentist model averaging method. The weights are chosen by minimizing a cross-validation criterion based on Wasserstein distance. In the cases where all candidate models are misspecified, we prove that the corresponding model averaging estimator has asymptotic optimality, achieving the lowest possible Wasserstein distance. When there are correctly specified candidate models, we prove that our method asymptotically assigns all weights to the correctly specified models. Numerical results of extensive simulations and a real data analysis on intracerebral hemorrhage data strongly favour our method.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 3","pages":"1994-2006"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818536/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To consider model uncertainty in global Fréchet regression and improve density response prediction, we propose a frequentist model averaging method. The weights are chosen by minimizing a cross-validation criterion based on Wasserstein distance. In the cases where all candidate models are misspecified, we prove that the corresponding model averaging estimator has asymptotic optimality, achieving the lowest possible Wasserstein distance. When there are correctly specified candidate models, we prove that our method asymptotically assigns all weights to the correctly specified models. Numerical results of extensive simulations and a real data analysis on intracerebral hemorrhage data strongly favour our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
频率模型平均的全球frachimet回归
为了考虑模型的不确定性,提高密度响应预测的准确性,提出了一种频率模型平均方法。通过最小化基于Wasserstein距离的交叉验证标准来选择权重。在所有候选模型都被错误指定的情况下,我们证明了相应的模型平均估计量具有渐近最优性,实现了尽可能低的Wasserstein距离。当存在正确指定的候选模型时,我们证明了我们的方法渐近地将所有权重分配给正确指定的模型。大量的数值模拟结果和对脑出血数据的实际数据分析表明,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
IEEE Transactions on Information Theory Information for Authors On Minimax Empirical Bayes Predictive Densities TechRxiv: Share Your Preprint Research with the World! IEEE Transactions on Information Theory Information for Authors Adaptive Monotonicity Testing in Sublinear Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1