Clustering Theorem in 1D Long-Range Interacting Systems at Arbitrary Temperatures

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Mathematical Physics Pub Date : 2025-02-20 DOI:10.1007/s00220-025-05242-4
Yusuke Kimura, Tomotaka Kuwahara
{"title":"Clustering Theorem in 1D Long-Range Interacting Systems at Arbitrary Temperatures","authors":"Yusuke Kimura,&nbsp;Tomotaka Kuwahara","doi":"10.1007/s00220-025-05242-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper delves into a fundamental aspect of quantum statistical mechanics—the absence of thermal phase transitions in one-dimensional (1D) systems. Originating from Ising’s analysis of the 1D spin chain, this concept has been pivotal in understanding 1D quantum phases, especially those with finite-range interactions, as extended by Araki. In this work, we focus on quantum long-range interactions and successfully derive a clustering theorem applicable to a wide range of interaction decays at arbitrary temperatures. This theorem applies to any interaction forms that decay faster than <span>\\(r^{-2}\\)</span> and does not rely on translation invariance or infinite system size assumptions. Also, we rigorously established that the temperature dependence of the correlation length is given by <span>\\(e^{\\mathrm{const.} \\beta }\\)</span>, which is the same as the classical cases. Our findings indicate the absence of phase transitions in 1D systems with super-polynomially decaying interactions, thereby expanding upon previous theoretical research. To overcome significant technical challenges originating from the divergence of the imaginary-time Lieb–Robinson bound, we utilize the quantum belief propagation to refine the cluster expansion method. This approach allowed us to address divergence issues effectively and contributed to a deeper understanding of low-temperature behaviors in 1D quantum systems.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05242-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05242-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into a fundamental aspect of quantum statistical mechanics—the absence of thermal phase transitions in one-dimensional (1D) systems. Originating from Ising’s analysis of the 1D spin chain, this concept has been pivotal in understanding 1D quantum phases, especially those with finite-range interactions, as extended by Araki. In this work, we focus on quantum long-range interactions and successfully derive a clustering theorem applicable to a wide range of interaction decays at arbitrary temperatures. This theorem applies to any interaction forms that decay faster than \(r^{-2}\) and does not rely on translation invariance or infinite system size assumptions. Also, we rigorously established that the temperature dependence of the correlation length is given by \(e^{\mathrm{const.} \beta }\), which is the same as the classical cases. Our findings indicate the absence of phase transitions in 1D systems with super-polynomially decaying interactions, thereby expanding upon previous theoretical research. To overcome significant technical challenges originating from the divergence of the imaginary-time Lieb–Robinson bound, we utilize the quantum belief propagation to refine the cluster expansion method. This approach allowed us to address divergence issues effectively and contributed to a deeper understanding of low-temperature behaviors in 1D quantum systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
期刊最新文献
Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories Clustering Theorem in 1D Long-Range Interacting Systems at Arbitrary Temperatures Large Amplitude Quasi-Periodic Traveling Waves in Two Dimensional Forced Rotating Fluids Characterization of k-Positive Maps The \(\varvec{d_\gamma /2}\)-Variation of Distance Profiles in \(\varvec{\gamma }\)-Liouville Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1