Impact of rare-earth doping on tin disulfide for photocatalytic applications: a first principles insight

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2025-02-20 DOI:10.1140/epjb/s10051-025-00874-w
Mohammed Mjahed, Hicham Bouda, El Mostafa Benchafia, El Mehdi Salmani, Hamid Ez-Zahraouy, Abdelilah Benyoussef
{"title":"Impact of rare-earth doping on tin disulfide for photocatalytic applications: a first principles insight","authors":"Mohammed Mjahed,&nbsp;Hicham Bouda,&nbsp;El Mostafa Benchafia,&nbsp;El Mehdi Salmani,&nbsp;Hamid Ez-Zahraouy,&nbsp;Abdelilah Benyoussef","doi":"10.1140/epjb/s10051-025-00874-w","DOIUrl":null,"url":null,"abstract":"<p>The optoelectronic and photocatalytic properties of rare-earth components (RE<span>\\(=\\)</span> Ce, La, and Sm) incorporated into the <span>\\(\\hbox {SnS}_2\\)</span> structure were investigated using first principles simulations. The TB-mBJ (Tran–Blaha modified Becke–Johnson) approach was used to explore several novel properties. The observed electronic band gap energy of pure <span>\\(\\hbox {SnS}_2\\)</span> is <span>\\(E_g = 2.4\\)</span> eV, which is in good agreement with the reported experimental value of <span>\\(E_g = 2.44\\)</span> eV. Results show that doping <span>\\(\\hbox {SnS}_2\\)</span> with RE elements at a concentration of 6.25% significantly reduces the electronic band gap compared to pristine <span>\\(\\hbox {SnS}_2\\)</span>. This reduction can be attributed to the smaller ionic radii of <span>\\(\\hbox {Ce}^{3+}\\)</span>, <span>\\(\\hbox {La}^{3+}\\)</span>, and <span>\\(\\hbox {Sm}^{3+}\\)</span> ions, as well as the appearance of new states hybridized by RE-4f within the band gap, leading to a remarkable enhancement of the absorption spectra in the visible light range. Additionally, the calculated edge positions of the conduction band minimum (CBM) and the valence band maximum (VBM) relative to the normal hydrogen electrode (NHE) for both pristine and RE-doped <span>\\(\\hbox {SnS}_2\\)</span> are optimal for water splitting. Consequently, doping <span>\\(\\hbox {SnS}_2\\)</span> with rare-earth elements appears to be a promising strategy for enhancing its photocatalytic activity in the visible light spectrum.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00874-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The optoelectronic and photocatalytic properties of rare-earth components (RE\(=\) Ce, La, and Sm) incorporated into the \(\hbox {SnS}_2\) structure were investigated using first principles simulations. The TB-mBJ (Tran–Blaha modified Becke–Johnson) approach was used to explore several novel properties. The observed electronic band gap energy of pure \(\hbox {SnS}_2\) is \(E_g = 2.4\) eV, which is in good agreement with the reported experimental value of \(E_g = 2.44\) eV. Results show that doping \(\hbox {SnS}_2\) with RE elements at a concentration of 6.25% significantly reduces the electronic band gap compared to pristine \(\hbox {SnS}_2\). This reduction can be attributed to the smaller ionic radii of \(\hbox {Ce}^{3+}\), \(\hbox {La}^{3+}\), and \(\hbox {Sm}^{3+}\) ions, as well as the appearance of new states hybridized by RE-4f within the band gap, leading to a remarkable enhancement of the absorption spectra in the visible light range. Additionally, the calculated edge positions of the conduction band minimum (CBM) and the valence band maximum (VBM) relative to the normal hydrogen electrode (NHE) for both pristine and RE-doped \(\hbox {SnS}_2\) are optimal for water splitting. Consequently, doping \(\hbox {SnS}_2\) with rare-earth elements appears to be a promising strategy for enhancing its photocatalytic activity in the visible light spectrum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Optical high harmonic generation in Dirac materials Influence of vertical throughflow on the linear and nonlinear stability analyses of Rayleigh–Bénard convection in a biviscous Bingham fluid saturating a porous medium Local statistical moments to capture Kramers–Moyal coefficients Impact of rare-earth doping on tin disulfide for photocatalytic applications: a first principles insight Structural and energetic stability of the lowest equilibrium structures of water clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1