Iterative Method for Accounting the Lunar–Solar Tide and Changes in Atmospheric Pressure

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Izvestiya, Physics of the Solid Earth Pub Date : 2025-02-20 DOI:10.1134/S106935132470109X
M. N. Drobyshev, D. V. Abramov, V. N. Koneshov
{"title":"Iterative Method for Accounting the Lunar–Solar Tide and Changes in Atmospheric Pressure","authors":"M. N. Drobyshev,&nbsp;D. V. Abramov,&nbsp;V. N. Koneshov","doi":"10.1134/S106935132470109X","DOIUrl":null,"url":null,"abstract":"<p>Obtaining the most accurate and reliable gravimetric data has always been and remains the main task of gravimetry. The purpose of the authors’ long-term research and this work in particular is to determine interference in gravimetric data caused by various external influences and to find ways to take them into account or eliminate them. The proposed method of iteratively taking pressure and tidal correction into account made it possible to increase the accuracy of single gravimetric readings to ±2 µGal. The main instruments for many years of research were relative automated gravimeters of the <i>CG Autograv</i> series from <i>Scintrex</i>; the main results obtained in this work are shown based on their example. In <i>CG</i>-5 and <i>CG</i>-6 gravimeters, the instrumental accuracy is 1.0 and 0.1 µGal, respectively. However, it cannot be said that a single reading will give the gravity increment with the specified accuracy. Relative gravimeters, in addition to the desired value, also record the device response to inertial influence, changes in meteorological factors, and its own hardware errors, which cannot be eliminated without additional information. Under the conditions of the Zapolskoye geophysical observatory in the Vladimir region, continuous gravimetric, seismic, and meteorological measurements were carried out for 8.5 months. The obtained data made it possible to analyze the possibility of partially taking the influence of the atmospheric pressure and determining the correct delta factors for 20 groups of waves with periods of 48 days or less into account. The minimum duration of the gravimetric series to obtain delta factors of waves with periods from 0.02 to 3.38 cycles per day was also estimated at 6 months.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 6","pages":"1290 - 1296"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S106935132470109X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining the most accurate and reliable gravimetric data has always been and remains the main task of gravimetry. The purpose of the authors’ long-term research and this work in particular is to determine interference in gravimetric data caused by various external influences and to find ways to take them into account or eliminate them. The proposed method of iteratively taking pressure and tidal correction into account made it possible to increase the accuracy of single gravimetric readings to ±2 µGal. The main instruments for many years of research were relative automated gravimeters of the CG Autograv series from Scintrex; the main results obtained in this work are shown based on their example. In CG-5 and CG-6 gravimeters, the instrumental accuracy is 1.0 and 0.1 µGal, respectively. However, it cannot be said that a single reading will give the gravity increment with the specified accuracy. Relative gravimeters, in addition to the desired value, also record the device response to inertial influence, changes in meteorological factors, and its own hardware errors, which cannot be eliminated without additional information. Under the conditions of the Zapolskoye geophysical observatory in the Vladimir region, continuous gravimetric, seismic, and meteorological measurements were carried out for 8.5 months. The obtained data made it possible to analyze the possibility of partially taking the influence of the atmospheric pressure and determining the correct delta factors for 20 groups of waves with periods of 48 days or less into account. The minimum duration of the gravimetric series to obtain delta factors of waves with periods from 0.02 to 3.38 cycles per day was also estimated at 6 months.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Regional Features of Seismic Wave Attenuation in the North Caucasus Slow Strain Waves in Geophysics Nanocracks at Destruction of Nepheline Radiometric Studies of Magnetic Anomalies in the Middle Timan Iterative Method for Accounting the Lunar–Solar Tide and Changes in Atmospheric Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1