D. A. Derusova, V. O. Nekhoroshev, V. Yu. Shpil’noy, A. V. Raut
{"title":"Application of Pulse Gas-Discharge Electroacoustic Transducer for Nondestructive Testing","authors":"D. A. Derusova, V. O. Nekhoroshev, V. Yu. Shpil’noy, A. V. Raut","doi":"10.1134/S1061830924603131","DOIUrl":null,"url":null,"abstract":"<p>The results of the study of a gas-discharge electroacoustic transducer operating based on a pulse discharge in air at atmospheric pressure are presented. The influence of the electrode system configuration on the acoustic characteristics of the transducer is considered. It is shown that changing the discharge chamber volume and the interelectrode gap significantly affects the radiation intensity. Features that arise when using electroacoustic transducers of open and closed types for NDT tasks are identified. It is demonstrated that the open-type gas-discharge electroacoustic transducer is a sufficiently powerful broadband excitation signal source and has prospects for application in non-destructive testing. The closed-type gas-discharge electroacoustic transducer has advantages when studying materials with special requirements for surface cleanliness or the magnitude of the applied external electric field.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 12","pages":"1350 - 1362"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924603131","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The results of the study of a gas-discharge electroacoustic transducer operating based on a pulse discharge in air at atmospheric pressure are presented. The influence of the electrode system configuration on the acoustic characteristics of the transducer is considered. It is shown that changing the discharge chamber volume and the interelectrode gap significantly affects the radiation intensity. Features that arise when using electroacoustic transducers of open and closed types for NDT tasks are identified. It is demonstrated that the open-type gas-discharge electroacoustic transducer is a sufficiently powerful broadband excitation signal source and has prospects for application in non-destructive testing. The closed-type gas-discharge electroacoustic transducer has advantages when studying materials with special requirements for surface cleanliness or the magnitude of the applied external electric field.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).